Stochastic approaches to wave turbulence

Daniel Schubring

October 27, 2023

Equilibrium and non-equilibrium physics

- Leaving familiar territory...
 - Thermal equilibrium
 - Local equilibrium and hydrodynamics
 - Turbulent stationary states
- Low orders of perturbation theory: Kolmogorov-Zakharov (KZ) spectrum
- Can it be extended to higher orders? Non-perturbatively?

Richardson cascade

"Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls, and so on to viscosity." (1922)

- 'Inertial range' in between forcing and dissipation
- ullet Stationary state parametrized by flux ϵ of conserved energy
- Kolmogorov 1941. Dimensional analysis with ϵ, ρ

Examples of wave turbulence

- Will focus on classical field theories (...but Schwinger-Keldysh)
- Examples of wave turbulence
 - Gravity and capillary waves (fluids)
 - Gravitational waves (cosmology)
 - Classical Yang-Mills (quark gluon plasma)
- Weak wave turbulence paradigm
 - **Express** in terms of classical a, a^* fields
 - Truncate interaction to low orders of non-linearity
 - Find and solve wave kinetic equation

Example: Capillary waves

- η is height of fluid, ϕ is velocity potential $v = \nabla \phi$.
- Form complex 'ladder operator' field

$$a_k = \sqrt{\frac{\sigma k^2}{2\omega_k}} \eta_k - i\sqrt{\frac{k}{2\omega_k}} \phi_k.$$

Truncated 'three-wave' Hamiltonian

$$H = \sum_{k} \omega_k a_k^* a_k + \frac{1}{2} \sum_{ijl} \left(\lambda_{l;ij} a_l^* a_i a_j + \text{c.c.} \right) + \mathcal{O}\left(a^4\right)$$

$$\omega_k \sim k^{3/2}, \qquad \lambda_{kl;ki,kj} \sim k^{9/4} \, \tilde{\lambda}_{l;ij}$$

Wave kinetic equation

$$H = \sum_{k} \omega_k a_k^* a_k + \frac{1}{2} \sum_{ijl} \left(\lambda_{l;ij} a_l^* a_i a_j + \text{c.c.} \right)$$

• Find time derivative of $a_r^*a_r$,

$$\{a_r^*a_r,H\} = \sum_{ij} \operatorname{Im} \left[\lambda_{r;ij} a_r^* a_i a_j - 2\lambda_{i;jr} a_i^* a_j a_r\right].$$

• Take expectation value (how?), $n_r \equiv \langle a_r^* a_r \rangle$.

$$\frac{dn_r}{dt} = \sum_{ij} \operatorname{Im} \left[\lambda_{r;ij} \left\langle a_r^* a_i a_j \right\rangle - 2 \lambda_{i;jr} \left\langle a_i^* a_j a_r \right\rangle \right]. \qquad \text{(wave kin. eq.)}$$

• $\frac{dn_r}{dt} = 0$ for either thermal equilibrium or KZ.

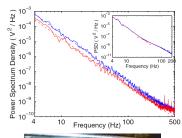
$$n_k = T\omega_k^{-1}$$
 or $n_k \sim \omega_k^{-17/6}$

Capillary waves: experimental evidence

• Going back to definition of a_k ,

$$\langle |\eta_k|^2 \rangle = \frac{\omega_k}{\sigma k^2} n_k \sim \omega_k^{-19/6}.$$

- Forced turbulence in ethanol tank on Airbus A310 Zero G
- Red: random forcing, slope -3.1
- Blue: periodic forcing, slope -3.2



C. Falcón et al 2009 EPL 86 14002 (arXiv:0708.1446)

How are expectation values calculated?

• The KZ solution involved solving kinetic equation

$$\frac{dn_r}{dt} = \sum_{ij} \operatorname{Im} \left[\lambda_{r;ij} \left\langle a_r^* a_i a_j \right\rangle - 2 \lambda_{i;jr} \left\langle a_i^* a_j a_r \right\rangle \right] = 0.$$

- Need to express $\langle a_r^* a_i a_j \rangle$ in terms of the n_r .
- Expectation values are calculated with respect to some $\rho(a, a^*)$.
- A zeroth order ρ_0 is taken to be Gaussian

$$\rho_0 = e^{-\sum_k \frac{1}{n_k} a_k^* a_k}.$$

• Wyld's method: ρ_0 applies to free fields $a^{(0)}$. Time dependent.

Liouville Hamiltonian

- We really want statistics in the stationary state
- ρ obeys Liouville equation in inertial range $\dot{\rho} = -\{\rho, H\}$.
- Stationary states are zero eigenvectors of Liouville Hamiltonian

$$\hat{H}_L \rho \equiv \{\rho, H\} = 0.$$

- Analogies to quantum mechanics (Prigogine)
- ullet Can find ho perturbatively from zeroth-order ho_0
- ullet But \hat{H}_L is rather pathological

Langevin equation for thermal equilibrium

- Helpful to consider thermal equilibrium case
- Need to modify dynamics such that ρ evolves to $\rho_B = e^{-\frac{1}{T}H}$.
- This can be done by adding dissipation and random forcing

$$\dot{a} = -\frac{\gamma}{\omega} \frac{\partial H}{\partial a^*} + f - i \frac{\partial H}{\partial a^*},$$

$$\langle f(t)f(t_0)\rangle = 2\frac{\gamma}{\omega}T\,\delta(t-t_0).$$

- Dissipation drives to local minima $\frac{\partial H}{\partial a} = \frac{\partial H}{\partial a^*} = 0$.
- ullet Random forcing involves temperature T
- Final 'inertial' term doesn't affect late time distribution.
- In the end can take $\gamma \to 0$.

Langevin equation for non-equilibrium states

Now simply drive different modes with distinct temperatures

$$\dot{a}_{k} = -\frac{\gamma}{\omega} \frac{\partial H}{\partial a_{k}^{*}} + f_{k} - i \frac{\partial H}{\partial a_{k}^{*}},$$
$$\langle f_{k}(t) f_{l}(0) \rangle = 2 \frac{\gamma_{k}}{\omega_{k}} T_{k} \, \delta(t) \delta_{kl}.$$

ullet For non-interacting H_0 , the late time distribution is just

$$\rho_0 = \prod_k e^{-\frac{\omega_k}{T_k} a_k^* a_k} = e^{-\sum_k \frac{1}{n_k} a_k^* a_k}.$$

- ullet The ho corresponding to the full H will have non-Gaussian corrections
- Can again consider $\gamma_k \to 0$ limit

The big picture

- We want to consider the turbulent KZ state at higher order
- The Langevin equation determines non-perturbative stationary states
- Expectation values like $\langle a_r^* a_i a_j \rangle$ may be calculated
- These determine the RHS of kinetic equation, and thus the KZ state
- Three equivalent methods:

Langevin equation \leftrightarrow Fokker-Planck Hamiltonian \leftrightarrow Path integral

Fokker-Planck equation

- Langevin equation determines $a_f(t; a_0)$ given initial conditions a_0
- ullet Averaging over f determines a distribution ho

$$\rho(a, t; a_0) = \langle \delta(a - a_f(t; a_0)) \rangle$$

ullet The Langevin equation for a_f implies an equation for ho

$$\dot{
ho} = -\left(\hat{H}_L + \hat{H}_\gamma\right)
ho$$

lacktriangle The Hamiltonian part of the Langevin equation leads to \hat{H}_L ,

$$\hat{H}_L \rho \equiv \{\rho, H\} = -i \sum_k \left(\frac{\partial \rho}{\partial a_k} \frac{\partial H}{\partial a_k^*} - \frac{\partial H}{\partial a_k} \frac{\partial \rho}{\partial a_k^*} \right).$$

The dissipation and forcing parts lead to

$$\hat{H}_{\gamma}\rho = -\sum_{k}\frac{\gamma_{k}}{\omega_{k}}\frac{\partial}{\partial a_{k}^{*}}\left[\frac{\partial H}{\partial a_{k}}\rho + T_{k}\frac{\partial\rho}{\partial a_{k}}\right] + \text{c.c.}$$

Linear and non-linear dissipation

$$\hat{H}_L \rho \equiv \{\rho, H\}, \qquad \hat{H}_\gamma \rho = -\sum_k \frac{\gamma_k}{\omega_k} \frac{\partial}{\partial a_k^*} \left[\frac{\partial H}{\partial a_k} \rho + T_k \frac{\partial \rho}{\partial a_k} \right] + \text{c.c.}$$

- ullet Since both \hat{H}_L and \hat{H}_γ are total derivatives, probability is conserved
- If $T_k=T$, $ho_B=e^{-\frac{H}{T}}$ satisfies $\left(\hat{H}_L+\hat{H}_\gamma\right)
 ho_B=0.$
- What if we linearize the dissipation term?

$$-\frac{\gamma}{\omega}\frac{\partial H}{\partial a^*} \to -\frac{\gamma}{\omega}\frac{\partial H_0}{\partial a^*} = -\gamma a$$

ullet ho_B is no longer stationary state, but \hat{H}_γ has no interaction dependence

Perturbation theory

- Goal is to calculate expectation values like $\langle a_r^* a_i a_j \rangle$
- Looking for stationary ρ , i.e. $\hat{H}\rho = 0$.
- Split up $\hat{H} = \hat{H}_0 + \hat{V}$, where $\hat{V}\psi = \{\psi, V\}$
- Geometric series for ρ in terms of ρ_0 ,

$$\rho = \rho_0 - \hat{H}_0^{-1} \hat{V} \rho \implies \rho = \left(1 - \hat{H}_0^{-1} \hat{V} + \left(-\hat{H}_0^{-1} \hat{V}\right)^2 + \dots\right) \rho_0$$

• We need to solve eigenvalue problem for ho^i, E_0^i

$$\hat{H}_0 \rho^i = E_0^i \rho^i$$

Diagonalizing \hat{H}_0

- We want to solve $\hat{H}_0 \rho = E_0 \rho$
- Helpful to introduce rescaled action-angle variables, x, α

$$a = \sqrt{nx}e^{-i\alpha}$$

$$\left[\omega \partial_{\alpha} - 2\gamma \left(x \partial_{x}^{2} + (x+1)\partial_{x} + \frac{1}{4x}\partial_{\alpha}^{2} + 1\right)\right] \rho(x,\alpha) = E_{0}\rho(x,\alpha).$$

Take ansatz

$$\rho_{\kappa,\nu}(x,\alpha) = \sqrt{x^{|\nu|}} e^{i\nu\alpha} \psi_{\kappa,\nu}(x) e^{-x}, \qquad E_0 = 2\gamma\kappa + \gamma|\nu| + i\nu\omega.$$

Reduces to associated Laguerre equation

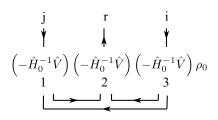
$$x\psi_{\kappa,\nu}^{"} + (1+|\nu|-x)\psi_{\kappa,\nu}^{'} + \kappa\psi_{\kappa,\nu} = 0.$$

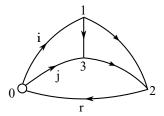
Example of a correction

• Want to calculate $\langle a_r a_i^* a_j^* \rangle^{(3)}$,

$$\langle a_r a_i^* a_j^* \rangle^{(3)} = \int da da^* \ a_r a_i^* a_j^* \left(-\hat{H}_0^{-1} \hat{V} \right)^3 \rho_0$$

- Recall $V=\frac{1}{2}\sum_{kij}\lambda_{k;ij}a_k^*a_ia_j+{\rm c.c.}$
- ullet Integral vanishes unless each a paired with a^* of same mode
- ullet Can construct time-ordered diagrams $t_0 < t_1 < t_2 < t_3$



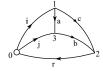


MSR path integral

- These same diagrams arise from a path integral approach
- Martin, Siggia, Rose 1973, Janssen 1976, de Dominicis 1976
- Comments on derivation
 - lacktriangle Directly from Fokker-Planck \hat{H}
 - From Langevin equation. Similar to Faddeev-Popov trick
 - ► Jacobian and non-linear dissipation
- ullet Fields in path integral involve time t or frequency z

 - ▶ Free propagator $\int \frac{dz}{2\pi} \frac{2\gamma n \, e^{-izt}}{(z-\omega)^2 + \gamma^2} = n \, e^{-i\omega t} e^{-\gamma |t|}$.
- But we only need equal time expectation values

Old-fashioned perturbation theory



- \bullet Example: propagator j from t_0 to t_3 : $n_j\,e^{-i\omega_j(t_3-t_0)}e^{-\gamma_j|t_3-t_0|}$
- Choosing a time ordering fixes absolute value sign
- ullet Integrating over t_3 produces same frequency denominator as \hat{H}_0^{-1}

$$\int_{t_2}^{\infty} dt_3 e^{-(i(\omega_j + \omega_a - \omega_b) + \gamma_a + \gamma_b + \gamma_c)t_3} = \frac{e^{-(i(\omega_j + \omega_a - \omega_b) + \gamma_a + \gamma_b + \gamma_c)t_2}}{i(\omega_j + \omega_a - \omega_b) + \gamma_a + \gamma_b + \gamma_c}$$

- ullet Then integrate over t_2 and t_1 for more denominators
- Algorithm for general diagrams in terms of simple rules

Coming back to turbulence

- ullet Now we can calculate high-order correlation functions in the state ho
- ullet But ho involves a distinct temperature T_k for each mode. Too much freedom?
- \bullet If we can set $\gamma \to 0,$ this would imply independent conserved quantities

$$\dot{\rho} = -\left(\hat{H}_L + \hat{H}_{\gamma}\right)\rho \rightarrow -\{\rho, H\} = 0.$$

- ullet There must be problems with the $\gamma o 0$ limit for most choices of T_k
- The KZ state avoids some pathologies in this limit

Ehrenfest theorem

• Take time derivative of expectation value of $G(a, a^*)$

$$\frac{d}{dt}\langle G\rangle = -\int dada^* G\left(\hat{H}_L + \hat{H}_\gamma\right)\rho$$
$$= \langle \{G, H\}\rangle - \int dada^* G\,\hat{H}_\gamma\rho.$$

For a stationary state (linear dissipation)

$$\langle \{G, H\} \rangle = \sum_{k} \gamma_{k} \left\langle a_{k} \frac{\partial G}{\partial a_{k}} + a_{k}^{*} \frac{\partial G}{\partial a_{k}^{*}} - 2n_{k} \frac{\partial^{2} G}{\partial a_{k} \partial a_{k}^{*}} \right\rangle.$$

• Using $G = a_r^* a_r$ will give wave kinetic equation on LHS

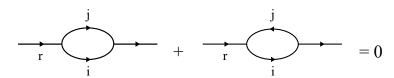
Wave kinetic equation

So there is alternate formulation of kinetic equation

$$\lim_{\gamma \to 0} \left\langle \frac{d}{dt} a_r^* a_r \right\rangle = \lim_{\gamma \to 0} 2\gamma_r \left[\left\langle a_r^* a_r \right\rangle - n_r \right]$$

- $\bullet \ \lim_{\gamma \to 0} \left\langle a_r^* a_r \right\rangle$ diverges except for KZ state
- Kinetic equation interpreted diagramatically

$$\sum_{ij} \operatorname{Im} \left[\lambda_{r;ij} \left\langle a_r^* a_i a_j \right\rangle - 2 \lambda_{i;jr} \left\langle a_i^* a_j a_r \right\rangle \right] = 0.$$



Higher-order correlations?

- Does the KZ state avoid all divergences as $\gamma \to 0$?
- Choose $G = a_1^* a_1 a_2^* a_2$ in the Ehrenfest equation
- Similarly

$$\lim_{\gamma \to 0} \left\langle \frac{d}{dt} a_1^* a_1 a_2^* a_2 \right\rangle = \lim_{\gamma \to 0} 2 \left(\gamma_1 + \gamma_2 \right) \left\langle a_1^* a_1 a_2^* a_2 \right\rangle_c \neq 0?$$

• Divergence avoided for thermal equilibrium, but not KZ?

Conclusion

Summary

- Treating weak wave turbulence in terms of stationary states by introducing auxilliary forcing and dissipation
- ► Efficient method to calculate correlation functions and corrections to the kinetic equation
- A non-perturbative understanding of the wave kinetic equation
- Remaining theoretical problems
 - Solution to the higher-order kinetic equation?
 - Better connection to time-dependent methods
 - ightharpoonup Understanding of γ divergences in higher correlation functions
- Some future directions
 - ► Large N model
 - Quantum mechanical turbulence

Thank you!

- Based on papers (2023):
 - Rosenhaus, D.S., Shuvo, Smolkin, Loop diagrams in the kinetic theory of waves (arXiv:2308.00740)
 - ▶ D.S., Fokker-Planck approach to wave turbulence (arXiv:2309.08484)
- Capillary waves example:
 - ► Theory: Pushkarev, Zakharov. Phys. Rev. Lett. 76, 3320 (1996)
 - Experiment: C. Falcón et al. EPL 86 14002 (2009) (arXiv:0708.1446)

Constructing the path integral

• Solve for $a_E(t)$ given $f, a(t_0), E$,

$$\dot{a} + \left(\frac{\gamma}{\omega} + i\right) \frac{\partial H}{\partial a^*} - f = E.$$

• The value of a function $G(a, a^*)$ 'on-shell' may be calculated

$$G(a_0, a_0^*) = \int \mathcal{D}E \mathcal{D}E^* \delta(E) \delta(E^*) G(a_E, a_E^*)$$

$$= \int \mathcal{D}a \mathcal{D}a^* \mathcal{D}\eta \mathcal{D}\eta^* \frac{\partial (E, E^*)}{\partial (a, a^*)} e^{i \int dt (\eta E^* + \eta^* E)} G(a, a^*)$$

ullet Now average over Gaussian statistics of forcing function f

$$\langle G(a, a^*) \rangle = \int \mathcal{D}f \mathcal{D}f^* e^{-\int dt \frac{|f|^2}{2\gamma n}} \dots$$