
Stochastic approaches to wave turbulence

Daniel Schubring

October 27, 2023

Rosenhaus, D.S, Shuvo, Smolkin (arXiv:2308.00740), D.S (arXiv:2309.08484)

Daniel Schubring Stochastic approaches to wave turbulence October 27, 2023 0 / 23



Introduction to weak turbulence

Equilibrium and non-equilibrium physics

Leaving familiar territory...
▶ Thermal equilibrium
▶ Local equilibrium and hydrodynamics
▶ Turbulent stationary states

Low orders of perturbation theory: Kolmogorov-Zakharov (KZ)
spectrum

Can it be extended to higher orders? Non-perturbatively?

Rosenhaus, D.S, Shuvo, Smolkin (arXiv:2308.00740), D.S (arXiv:2309.08484)
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Introduction to weak turbulence

Richardson cascade

“Big whirls have little whirls that feed on their velocity, and
little whirls have lesser whirls, and so on to viscosity.” (1922)

‘Inertial range’ in between forcing and dissipation

Stationary state parametrized by flux ϵ of conserved energy

Kolmogorov 1941. Dimensional analysis with ϵ, ρ

Image: Steven Mathey. Neckar river, Heidelberg. (arXiv:1410.8712)

Daniel Schubring Stochastic approaches to wave turbulence October 27, 2023 2 / 23



Introduction to weak turbulence

Examples of wave turbulence

Will focus on classical field theories (...but Schwinger-Keldysh)

Examples of wave turbulence
▶ Gravity and capillary waves (fluids)
▶ Gravitational waves (cosmology)
▶ Classical Yang-Mills (quark gluon plasma)

Weak wave turbulence paradigm
▶ Express in terms of classical a, a∗ fields
▶ Truncate interaction to low orders of non-linearity
▶ Find and solve wave kinetic equation

Galtier, Nazarenko 2017 (arXiv:1703.09069). Mehtar-Tani 2016 (arXiv:1611.01527)
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Introduction to weak turbulence

Example: Capillary waves

η is height of fluid, ϕ is velocity potential v = ∇ϕ.
Form complex ‘ladder operator’ field

ak =

√
σk2

2ωk
ηk − i

√
k

2ωk
ϕk.

Truncated ‘three-wave’ Hamiltonian

H =
∑
k

ωka
∗
kak +

1

2

∑
ijl

(λl;ija
∗
l aiaj + c.c) +O

(
a4
)

ωk ∼ k3/2, λkl;ki,kj ∼ k9/4 λ̃l;ij

Pushkarev, Zakharov. Phys. Rev. Lett. 76, 3320 (1996)
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Introduction to weak turbulence

Wave kinetic equation

H =
∑
k

ωka
∗
kak +

1

2

∑
ijl

(λl;ija
∗
l aiaj + c.c)

Find time derivative of a∗rar,

{a∗rar, H} =
∑
ij

Im [λr;ija
∗
raiaj − 2λi;jra

∗
i ajar] .

Take expectation value (how?), nr ≡ ⟨a∗rar⟩.

dnr
dt

=
∑
ij

Im [λr;ij ⟨a∗raiaj⟩ − 2λi;jr ⟨a∗i ajar⟩] . (wave kin. eq.)

dnr

dt = 0 for either thermal equilibrium or KZ.

nk = Tω−1
k or nk ∼ ω

−17/6
k
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Introduction to weak turbulence

Capillary waves: experimental evidence

Going back to definition of ak,

⟨|ηk|2⟩ =
ωk

σk2
nk ∼ ω

−19/6
k .

Forced turbulence in ethanol
tank on Airbus A310 Zero G

Red: random forcing, slope -3.1

Blue: periodic forcing, slope -3.2

C. Falcón et al 2009 EPL 86 14002 (arXiv:0708.1446)
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Introducing the Langevin equation

How are expectation values calculated?

The KZ solution involved solving kinetic equation

dnr

dt
=

∑
ij

Im [λr;ij ⟨a∗raiaj⟩ − 2λi;jr ⟨a∗i ajar⟩] = 0.

Need to express ⟨a∗raiaj⟩ in terms of the nr.

Expectation values are calculated with respect to some ρ(a, a∗).

A zeroth order ρ0 is taken to be Gaussian

ρ0 = e
−

∑
k

1
nk

a∗
kak .

Wyld’s method: ρ0 applies to free fields a(0). Time dependent.
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Introducing the Langevin equation

Liouville Hamiltonian

We really want statistics in the stationary state

ρ obeys Liouville equation in inertial range ρ̇ = −{ρ,H}.
Stationary states are zero eigenvectors of Liouville Hamiltonian

ĤLρ ≡ {ρ,H} = 0.

Analogies to quantum mechanics (Prigogine)

Can find ρ perturbatively from zeroth-order ρ0

But ĤL is rather pathological

Gurarie 1995 (hep-th/9405077), Rosenhaus, Smolkin 2022 (2212.02555).
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Introducing the Langevin equation

Langevin equation for thermal equilibrium

Helpful to consider thermal equilibrium case

Need to modify dynamics such that ρ evolves to ρB = e−
1
T
H .

This can be done by adding dissipation and random forcing

ȧ = −γ
ω

∂H

∂a∗
+ f − i

∂H

∂a∗
,

⟨f(t)f(t0)⟩ = 2
γ

ω
T δ(t− t0).

Dissipation drives to local minima ∂H
∂a = ∂H

∂a∗ = 0.

Random forcing involves temperature T

Final ‘inertial’ term doesn’t affect late time distribution.

In the end can take γ → 0.
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Introducing the Langevin equation

Langevin equation for non-equilibrium states

Now simply drive different modes with distinct temperatures

ȧk = −γ
ω

∂H

∂a∗k
+ fk − i

∂H

∂a∗k
,

⟨fk(t)fl(0)⟩ = 2
γk
ωk
Tk δ(t)δkl.

For non-interacting H0, the late time distribution is just

ρ0 =
∏
k

e
−ωk

Tk
a∗kak = e

−
∑

k
1
nk

a∗kak .

The ρ corresponding to the full H will have non-Gaussian corrections

Can again consider γk → 0 limit
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Introducing the Langevin equation

The big picture

We want to consider the turbulent KZ state at higher order

The Langevin equation determines non-perturbative stationary states

Expectation values like ⟨a∗raiaj⟩ may be calculated

These determine the RHS of kinetic equation, and thus the KZ state

Three equivalent methods:

Langevin equation ↔ Fokker-Planck Hamiltonian ↔ Path integral

Daniel Schubring Stochastic approaches to wave turbulence October 27, 2023 11 / 23



Fokker-Planck and MSR

Fokker-Planck equation

Langevin equation determines af (t; a0) given initial conditions a0

Averaging over f determines a distribution ρ

ρ(a, t; a0) = ⟨δ(a− af (t; a0))⟩

The Langevin equation for af implies an equation for ρ

ρ̇ = −
(
ĤL + Ĥγ

)
ρ

▶ The Hamiltonian part of the Langevin equation leads to ĤL,

ĤLρ ≡ {ρ,H} = −i
∑
k

(
∂ρ

∂ak

∂H

∂a∗k
− ∂H

∂ak

∂ρ

∂a∗k

)
.

▶ The dissipation and forcing parts lead to

Ĥγρ = −
∑
k

γk
ωk

∂

∂a∗k

[
∂H

∂ak
ρ+ Tk

∂ρ

∂ak

]
+ c.c.
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Fokker-Planck and MSR

Linear and non-linear dissipation

ĤLρ ≡ {ρ,H}, Ĥγρ = −
∑
k

γk
ωk

∂

∂a∗k

[
∂H

∂ak
ρ+ Tk

∂ρ

∂ak

]
+ c.c.

Since both ĤL and Ĥγ are total derivatives, probability is conserved

If Tk = T , ρB = e−
H
T satisfies

(
ĤL + Ĥγ

)
ρB = 0.

What if we linearize the dissipation term?

− γ

ω

∂H

∂a∗
→ − γ

ω

∂H0

∂a∗
= −γa

ρB is no longer stationary state, but Ĥγ has no interaction dependence
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Fokker-Planck and MSR

Perturbation theory

Goal is to calculate expectation values like ⟨a∗raiaj⟩

Looking for stationary ρ, i.e. Ĥρ = 0.

Split up Ĥ = Ĥ0 + V̂ , where V̂ ψ = {ψ, V }

Geometric series for ρ in terms of ρ0,

ρ = ρ0 − Ĥ−1
0 V̂ ρ =⇒ ρ =

(
1− Ĥ−1

0 V̂ +
(
−Ĥ−1

0 V̂
)2

+ . . .

)
ρ0

We need to solve eigenvalue problem for ρi, Ei
0

Ĥ0ρ
i = Ei

0ρ
i
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Fokker-Planck and MSR

Diagonalizing Ĥ0

We want to solve Ĥ0ρ = E0ρ

Helpful to introduce rescaled action-angle variables, x, α

a =
√
nxe−iα

[
ω∂α − 2γ

(
x∂2x + (x+ 1)∂x +

1

4x
∂2α + 1

)]
ρ(x, α) = E0ρ(x, α).

Take ansatz

ρκ,ν(x, α) =
√
x
|ν|
eiναψκ,ν(x)e

−x, E0 = 2γκ+ γ|ν|+ iνω.

Reduces to associated Laguerre equation

xψ′′
κ,ν + (1 + |ν| − x)ψ′

κ,ν + κψκ,ν = 0.
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Fokker-Planck and MSR

Example of a correction

Want to calculate ⟨ara∗i a∗j ⟩(3),

⟨ara∗i a∗j ⟩(3) =
∫
dada∗ ara

∗
i a

∗
j

(
−Ĥ−1

0 V̂
)3

ρ0

Recall V = 1
2

∑
kij λk;ija

∗
kaiaj + c.c.

Integral vanishes unless each a paired with a∗ of same mode

Can construct time-ordered diagrams t0 < t1 < t2 < t3

1

2

3

i

j

r
0

i

irj

321
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Fokker-Planck and MSR

MSR path integral

These same diagrams arise from a path integral approach

Martin, Siggia, Rose 1973, Janssen 1976, de Dominicis 1976

Comments on derivation

▶ Directly from Fokker-Planck Ĥ
▶ From Langevin equation. Similar to Faddeev-Popov trick
▶ Jacobian and non-linear dissipation

Fields in path integral involve time t or frequency z

▶ Z =
∫
DaDa∗e−

∫
dz
2π

1
2γn |(−i(z−ω)+γ)a+i ∂V

∂a∗ |2

▶ Free propagator
∫

dz
2π

2γn e−izt

(z−ω)2+γ2 = n e−iωte−γ|t|.

But we only need equal time expectation values

Application to wave kinetic equation: Rosenhaus, Smolkin 2022 (2203.08168)
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Fokker-Planck and MSR

Old-fashioned perturbation theory

1

2

3

i

j

r
0

i a

b

c

Example: propagator j from t0 to t3: nj e
−iωj(t3−t0)e−γj |t3−t0|

Choosing a time ordering fixes absolute value sign

Integrating over t3 produces same frequency denominator as Ĥ−1
0∫ ∞

t2

dt3e
−(i(ωj+ωa−ωb)+γa+γb+γc)t3 =

e−(i(ωj+ωa−ωb)+γa+γb+γc)t2

i(ωj + ωa − ωb) + γa + γb + γc

Then integrate over t2 and t1 for more denominators

Algorithm for general diagrams in terms of simple rules

Rosenhaus, DS, Shuvo, Smolkin 2023 (2308.00740)
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Stochastic Ehrenfest theorem

Coming back to turbulence

Now we can calculate high-order correlation functions in the state ρ

But ρ involves a distinct temperature Tk for each mode. Too much
freedom?

If we can set γ → 0, this would imply independent conserved
quantities

ρ̇ = −
(
ĤL + Ĥγ

)
ρ→ −{ρ,H} = 0.

There must be problems with the γ → 0 limit for most choices of Tk

The KZ state avoids some pathologies in this limit
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Stochastic Ehrenfest theorem

Ehrenfest theorem

Take time derivative of expectation value of G(a, a∗)

d

dt
⟨G⟩ = −

∫
dada∗G

(
ĤL + Ĥγ

)
ρ

= ⟨{G,H}⟩ −
∫
dada∗GĤγρ.

For a stationary state (linear dissipation)

⟨{G,H}⟩ =
∑
k

γk

〈
ak
∂G

∂ak
+ a∗k

∂G

∂a∗k
− 2nk

∂2G

∂ak∂a
∗
k

〉
.

Using G = a∗rar will give wave kinetic equation on LHS
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Stochastic Ehrenfest theorem

Wave kinetic equation

So there is alternate formulation of kinetic equation

lim
γ→0

〈
d

dt
a∗rar

〉
= lim

γ→0
2γr [⟨a∗rar⟩ − nr]

lim
γ→0

⟨a∗rar⟩ diverges except for KZ state

Kinetic equation interpreted diagramatically∑
ij

Im [λr;ij ⟨a∗raiaj⟩ − 2λi;jr ⟨a∗i ajar⟩] = 0.

+r
i

j

r
i

j

= 0
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Stochastic Ehrenfest theorem

Higher-order correlations?

Does the KZ state avoid all divergences as γ → 0?

Choose G = a∗1a1a
∗
2a2 in the Ehrenfest equation

Similarly

lim
γ→0

〈
d

dt
a∗1a1a

∗
2a2

〉
= lim

γ→0
2 (γ1 + γ2) ⟨a∗1a1a∗2a2⟩c ̸= 0?

Divergence avoided for thermal equilibrium, but not KZ?
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Stochastic Ehrenfest theorem

Conclusion

Summary
▶ Treating weak wave turbulence in terms of stationary states by

introducing auxilliary forcing and dissipation
▶ Efficient method to calculate correlation functions and corrections to

the kinetic equation
▶ A non-perturbative understanding of the wave kinetic equation

Remaining theoretical problems
▶ Solution to the higher-order kinetic equation?
▶ Better connection to time-dependent methods
▶ Understanding of γ divergences in higher correlation functions

Some future directions
▶ Large N model
▶ Quantum mechanical turbulence

Shavit, Falkovich 2020 (1911.12670)
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Appendix

Thank you!

Based on papers (2023):
▶ Rosenhaus, D.S., Shuvo, Smolkin, Loop diagrams in the kinetic theory

of waves (arXiv:2308.00740)
▶ D.S., Fokker-Planck approach to wave turbulence (arXiv:2309.08484)

Capillary waves example:
▶ Theory: Pushkarev, Zakharov. Phys. Rev. Lett. 76, 3320 (1996)
▶ Experiment: C. Falcón et al. EPL 86 14002 (2009) (arXiv:0708.1446)
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Appendix

Constructing the path integral

Solve for aE(t) given f, a(t0), E,

ȧ+
( γ
ω

+ i
) ∂H
∂a∗

− f = E.

The value of a function G(a, a∗) ‘on-shell’ may be calculated

G(a0, a
∗
0) =

∫
DEDE∗δ(E)δ(E∗)G(aE , a

∗
E)

=

∫
DaDa∗DηDη∗ ∂ (E, E

∗)

∂ (a, a∗)
ei

∫
dt(ηE∗+η∗E)G(a, a∗)

Now average over Gaussian statistics of forcing function f

⟨G(a, a∗)⟩ =
∫

DfDf∗e−
∫
dt

|f|2
2γn . . .
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