Stochastic approaches to wave turbulence

Daniel Schubring

March 14, 2024

The main point

- Weak wave turbulence paradigm
 - Find wave kinetic equation at leading order in a small parameter
 - Study turbulent (KZ) stationary states
- Can it be extended to higher orders? Non-perturbatively?
- Our approach involves auxilliary stochastic forcing, dissipation
 - Non-equilibrium stationary state from 'equilibrium' methods
 - Simple(ish) algorithm to calculate corrections to collision integral
 - ► Can derive kinetic equation in a large N model

What is the system?

ullet Consider classical field theories in terms of field a_k

$$H = \sum_{k} \omega_k a_k^* a_k + \sum_{ijkl} \lambda_{ij;kl} a_i^* a_j^* a_k a_l$$

- Depending on choice of ω, λ ,
 - Non-linear Schrödinger
 - Gravity waves
 - ► Capillary waves?

Deriving kinetic equation

$$H = \sum_{k} \omega_k a_k^* a_k + \sum_{ijkl} \lambda_{ij;kl} a_i^* a_j^* a_k a_l$$

ullet Equations of motion for 'wave action' $a_r^*a_r$

$$\frac{d}{dt}a_r^*a_r = \{a_k^*a_k, H\} = 4\sum_{jkl} \operatorname{Im}\left(\lambda_{rj;kl}a_r^*a_j^*a_ka_l\right)$$

- Take an ensemble average, $\langle a_r^* a_r \rangle \equiv n_r$
- Closure: $\langle a_r^* a_j^* a_k a_l \rangle$ can be expressed in terms of n (How?)

Weak wave turbulence

ullet First order approximation to $\langle a_r^* a_j^* a_k a_l \rangle$

$$\frac{d}{dt}n_r = 4\sum_{jkl} \operatorname{Im}\left(\lambda_{rj;kl}\langle a_r^* a_j^* a_k a_l\rangle\right)$$

$$\propto \sum_{jkl} |\lambda_{rj;kl}|^2 \left(\prod n\right) \left(\frac{1}{n_r} + \frac{1}{n_j} - \frac{1}{n_k} - \frac{1}{n_l}\right) \delta\left(\sum \omega\right)$$

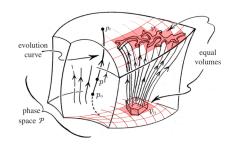
- This has equilibrium solutions $n_i = T/\left(\omega_i \mu\right)$
- Also non-trivial KZ solutions: $n(k_i) \propto |k_i|^{-\gamma}$
- Do these solutions exist at higher order?

Phase space picture

- Turbulence as stationary ensemble $\rho(a, a^*)$ on phase space
- \bullet Can calculate expectation values like $\langle a_r^* a_j^* a_k a_l \rangle$

By Liouville equation,

$$\frac{d\rho}{dt} = -\{\rho, H\} = 0.$$



A formal solution

- \bullet Liouville 'Hamiltonian': $\hat{H}\rho=\{\rho,H\}$
- \bullet Looking for zero eigenfunctions $\hat{H}\rho=0$
- ullet Find solution ho_0 to unperturbed Hamiltonian

$$\hat{H}_0 \rho_0 = -\left\{\rho_0, \sum_k \omega_k a_k^* a_k\right\} = 0$$

- A lot of solutions. Pick $ho_0 \propto e^{-\sum_k \frac{1}{n_k} a_k^* a_k}$
- ullet Full solution $\left(\hat{H}_0+\hat{V}
 ight)
 ho=0$, if ho satisfies

$$\rho = \rho_0 - \hat{H}_0^{-1} \hat{V} \rho$$

• Closure: ρ depends on wave action n_k in ρ_0

A perturbative solution

$$\rho = \left(1 - \hat{H}_0^{-1}\hat{V} + \left(-\hat{H}_0^{-1}\hat{V}\right)^2 + \dots\right)\rho_0$$

- First order: $\hat{V}\rho_0=i\sum\left(\dots\right)a_i^*a_j^*a_ka_l\rho_0$
- But 'problem of small denominators':

$$\hat{H}_0 a_i^* a_j^* a_k a_l \rho_0 = i \left(\omega_i + \omega_j - \omega_k - \omega_l \right) a_i^* a_j^* a_k a_l \rho_0$$

- How to take $\hat{H}_0^{-1}\hat{V}\rho_0$ if there are resonances?
- ullet Ad-hoc solution: Regulate $\hat{H_0}^{-1}
 ightarrow \left(\hat{H_0} \epsilon
 ight)^{-1}$
- ullet Finds kinetic equation! But desire more well-behaved \hat{H}_0

Introducing forcing and dissipation

- Goal: Regulate Liouville Hamiltonian
- Modify classical equations of motion (one d.o.f.)

$$\dot{a} = -i\frac{\partial H}{\partial a^*} \quad \rightarrow \quad \dot{a} = -i\frac{\partial H}{\partial a^*} - \frac{\gamma}{\omega}\frac{\partial H}{\partial a^*} + f.$$

- ullet Dissipation term drives to local minima of H
- ullet Random forcing involves temperature T

$$\langle f(t)f(t_0)\rangle = 2\frac{\gamma}{\omega}T\,\delta(t-t_0).$$

- Late time distribution is just $\rho \propto e^{-\frac{1}{T}H}$.
- In the end can take $\gamma \to 0$ limit

Many degrees of freedom

Now simply drive different modes with distinct temperatures

$$\dot{a}_k = -i\frac{\partial H}{\partial a_k^*} - \frac{\gamma}{\omega} \frac{\partial H}{\partial a_k^*} + f_k,$$
$$\langle f_k(t) f_l(0) \rangle = 2\frac{\gamma_k}{\omega_k} T_k \, \delta(t) \delta_{kl}.$$

ullet For non-interacting H_0 , the late time distribution is just

$$\rho_0 = \prod_k e^{-\frac{\omega_k}{T_k} a_k^* a_k} = e^{-\sum_k \frac{1}{n_k} a_k^* a_k}.$$

- \bullet The ρ corresponding to the full H will have non-Gaussian corrections
- Can again consider $\gamma_k \to 0$ limit

The big picture

- ullet Classical equations o Langevin equations. Parameters γ_k, n_k
- Liouville Hamiltonian → Fokker-Planck Hamiltonian
- ullet Solve perturbatively for non-equilibrium stationary state ho
- Expectation values like $\langle a_r^* a_i^* a_k a_l \rangle$ may be calculated
- These determine the collision integral of kinetic equation
- Finally take the limit $\gamma_k \to 0$ (if possible)
- Equivalent approach: Martin-Siggia-Rose path integral
- (MSR approach related to Schwinger-Keldysh)

Introducing Fokker-Planck equation

- Completely analogous to Liouville equation
- Langevin equation implies time dependence for phase space functions

$$\frac{d\rho}{dt} = -\left(\hat{H}_L + \hat{H}_\gamma\right)\rho$$

- $\hat{H}_L
 ho = \{
 ho, H\}$ is just the Liouville Hamiltonian, as before
- Dissipation and forcing leads to

$$\hat{H}_{\gamma}\rho = -\sum_{k} \frac{\gamma_{k}}{\omega_{k}} \frac{\partial}{\partial a_{k}^{*}} \left[\frac{\partial H}{\partial a_{k}} \rho + T_{k} \frac{\partial \rho}{\partial a_{k}} \right] + \text{c.c.}$$

More on the Fokker-Planck equation

$$\hat{H}_L \rho \equiv \{\rho, H\}, \qquad \hat{H}_\gamma \rho = -\sum_k \frac{\gamma_k}{\omega_k} \frac{\partial}{\partial a_k^*} \left[\frac{\partial H}{\partial a_k} \rho + T_k \frac{\partial \rho}{\partial a_k} \right] + \text{c.c.}$$

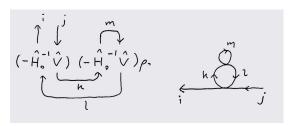
- If $T_k = T$, $\left(\hat{H}_L + \hat{H}_\gamma\right)e^{-\frac{H}{T}} = 0$.
- What if we linearize the dissipation term? $-\frac{\gamma}{\omega}\frac{\partial H}{\partial a^*}\to -\frac{\gamma}{\omega}\frac{\partial H_0}{\partial a^*}=-\gamma a$
 - $lackbox{ Good: } \hat{H}_{\gamma}$ has no interaction dependence, simpler perturbation theory
 - lacktriangle Bad: Thermal equilibrium is not a stationary state at finite γ
 - ▶ Since we are ultimately taking $\gamma \to 0$, perhaps this is fine
- ullet In either case, the problem of diagonalizing $\hat{H_0}$ is much clearer
 - Can be reduced to the associated Laguerre equation
 - ► A unique zero eigenvector
 - ▶ The role of the ad-hoc ϵ is played by γ

Diagrams from perturbative corrections

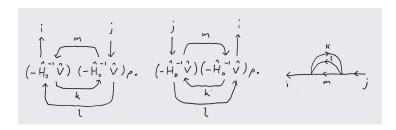
• Example: Want to calculate $\langle a_i a_j^* \rangle^{(2)}$,

$$\langle a_i a_j^* \rangle^{(2)} = \int da da^* \ a_i a_j^* \left(-\hat{H}_0^{-1} \hat{V} \right)^2 \rho_0$$

- Recall $V = \sum_{ijkl} \lambda_{ij;kl} a_i^* a_j^* a_k a_l$
- Integral vanishes unless each a paired with a^* of same mode
- Example of pairing



Time orderings of vertices



- A contribution really involves an ordering of the vertices
- These diagrams also arise in the MSR path integral
- Each line is associated to a propagator $ne^{-i\omega t}e^{-\gamma|t|}$
- The ordering of vertices is just time-ordering
- There are simple rules for evaluating time-ordered diagrams

Coming back to turbulence

- \bullet Now we can calculate high-order correlation functions in the state ρ
- But ρ involves a distinct T_k or n_k for each mode. Too much freedom?
- \bullet If we can set $\gamma \to 0,$ this would imply independent conserved quantities

$$\dot{\rho} = -\left(\hat{H}_L + \hat{H}_\gamma\right)\rho \rightarrow -\{\rho, H\} = 0.$$

- ullet There must be problems with the $\gamma o 0$ limit for most choices of n_k
- The KZ state avoids some pathologies in this limit

Ehrenfest theorem

ullet Take time derivative of expectation value of $G(a,a^*)$

$$\frac{d}{dt}\langle G \rangle = -\int dada^* G \left(\hat{H}_L + \hat{H}_\gamma \right) \rho$$
$$= \langle \{G, H\} \rangle - \int dada^* G \, \hat{H}_\gamma \rho.$$

• For a stationary state (linear dissipation)

$$\langle \{G, H\} \rangle = \sum_{k} \gamma_{k} \left\langle a_{k} \frac{\partial G}{\partial a_{k}} + a_{k}^{*} \frac{\partial G}{\partial a_{k}^{*}} - 2n_{k} \frac{\partial^{2} G}{\partial a_{k} \partial a_{k}^{*}} \right\rangle.$$

• Using $G = a_r^* a_r$ will give wave kinetic equation

Back to wave kinetic equation

This relates a 4-point expectation to a 2-point expectation

$$\begin{split} \langle \{a_r^* a_r, H\} \rangle &= 4 \sum_{jkl} \operatorname{Im} \left(\lambda_{rj;kl} \langle a_r^* a_j^* a_k a_l \rangle \right) \\ &= 2 \gamma_r \left[\langle a_r^* a_r \rangle - n_r \right] \end{split}$$

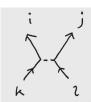
- In general $\langle a_r^* a_r \rangle \propto (2\gamma_r)^{-1}$
- ullet The $\gamma o 0$ limit does not exist for most choices of n_k
- Collision integral may be found from $\langle a_r^* a_r \rangle$

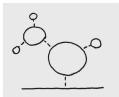
Large N model

- Can sum certain corrections to all orders
- Extend a_k to N component field \vec{a}_k

$$H = \sum_{k} \omega_{k} \vec{a}_{k}^{*} \cdot \vec{a}_{k} + \frac{1}{N} \sum_{ijkl} \lambda_{ij;kl} \left(\vec{a}_{i}^{*} \cdot \vec{a}_{k} \right) \left(\vec{a}_{j}^{*} \cdot \vec{a}_{l} \right)$$

- Can order diagrams in powers of 1/N
 - ightharpoonup Each vertex leads to a factor of 1/N
 - ightharpoonup Each loop leads to a factor of N

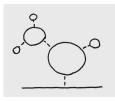




Cactus diagrams

- ullet 'Cacti' have no cost in 1/N
- ullet This amounts to a renormalization of ω, n, γ

$$\tilde{\omega}_k = \omega_k + 2\sum_l \lambda_{kl;kl} \tilde{n}_l,$$



ullet The renormalization of n is akin to 'saddle point' or 'gap' equations

$$\tilde{n}_k = \frac{n_k}{1 + \frac{2}{\omega_k} \sum_{l} \lambda_{kl;kl} \tilde{n}_l}$$

 \bullet For linear dissipation the cacti simplify and n is not renormalized

Bubble chains

- A bubble chain arc contributes at order 1/N
- This amounts to a renormalization of $\lambda_{ij:kl}$

$$\tilde{\lambda} = \frac{\lambda}{1 - \lambda \mathcal{L}}$$

- ${\cal L}$ is an integral derived from a single bubble ${\cal L} \propto \int d^d k {\Delta n \over \Delta \omega + i \gamma}$
- Collision integral takes same form as before

$$\frac{d}{dt}\tilde{n}_r \propto \frac{1}{N} \sum_{jkl} \left| \tilde{\lambda}_{rj;kl} \right|^2 \left(\prod \tilde{n} \right) \left(\frac{1}{\tilde{n}_r} + \frac{1}{\tilde{n}_j} - \frac{1}{\tilde{n}_k} - \frac{1}{\tilde{n}_l} \right) \delta \left(\sum \tilde{\omega} \right)$$

A change in scaling?

- So what is different?
- Some naive analyses:

$$\tilde{\lambda} = \frac{\lambda}{1 - \lambda \mathcal{L}}, \qquad \lambda \mathcal{L} \propto \lambda \int d^d k \frac{\Delta n}{\Delta \omega}$$

▶ For $\tilde{\omega}, \tilde{\lambda}$ to have same scaling as unrenormalized ω, λ

$$\tilde{\omega} \sim |k|^{\alpha}, \quad \tilde{\lambda} \sim |k|^{\beta}, \quad \tilde{n} \propto |k|^{-\gamma}$$

$$\gamma = d + \beta - \alpha$$

▶ In the 'non-perturbative' limit where $\lambda \mathcal{L} \gg 1$, $\tilde{\lambda} \approx \lambda/(\lambda \mathcal{L})$

$$\beta \to \gamma + \alpha - d$$

Conclusion

Summary

- Modified equations of motion by auxilliary forcing and dissipation
- Efficient method to calculate correlation functions and corrections to the kinetic equation
- Ehrenfest theorem: Non-perturbative relations between correlation functions
- ▶ A kinetic equation for a large N theory
- Remaining puzzles
 - ▶ Interpretation of large N kinetic equation
 - Understanding of γ divergences in higher correlation functions

Thank you!

- Based on papers:
 - ▶ Rosenhaus, D.S., Shuvo, Smolkin, *Loop diagrams in the kinetic theory of waves* (arXiv:2308.00740)
 - D.S., Fokker-Planck approach to wave turbulence (arXiv:2309.08484)
 - ▶ Kinetic equation at large N: work in progress with V. Rosenhaus
- See also
 - Rosenhaus, Smolkin, Feynman rules for forced wave turbulence (arXiv:2203.08168)
 - Rosenhaus, Falkovich, Interaction renormalization and validity of kinetic equations for turbulent states (arXiv:2308.00033)

MSR path integral

- These same diagrams arise from a path integral approach
- Martin, Siggia, Rose 1973, Janssen 1976, de Dominicis 1976
- Comments on derivation
 - lacktriangle Directly from Fokker-Planck \hat{H}
 - From Langevin equation. Similar to Faddeev-Popov trick
 - ► Jacobian and non-linear dissipation
- ullet Fields in path integral involve time t or frequency z

 - ▶ Free propagator $\int \frac{dz}{2\pi} \frac{2\gamma n \, e^{-izt}}{(z-\omega)^2 + \gamma^2} = n \, e^{-i\omega t} e^{-\gamma |t|}$.
- But we only need equal time expectation values

Constructing the path integral

• Solve for $a_E(t)$ given $f, a(t_0), E$,

$$\dot{a} + \left(\frac{\gamma}{\omega} + i\right) \frac{\partial H}{\partial a^*} - f = E.$$

ullet The value of a function $G(a,a^*)$ 'on-shell' may be calculated

$$G(a_0, a_0^*) = \int \mathcal{D}E \mathcal{D}E^* \delta(E) \delta(E^*) G(a_E, a_E^*)$$

$$= \int \mathcal{D}a \mathcal{D}a^* \mathcal{D}\eta \mathcal{D}\eta^* \frac{\partial (E, E^*)}{\partial (a, a^*)} e^{i \int dt (\eta E^* + \eta^* E)} G(a, a^*)$$

ullet Now average over Gaussian statistics of forcing function f

$$\langle G(a, a^*) \rangle = \int \mathcal{D}f \mathcal{D}f^* e^{-\int dt \frac{|f|^2}{2\gamma n}} \dots$$

Diagonalizing \hat{H}_0

- ullet We want to solve $\hat{H}_0
 ho = E_0
 ho$
- ullet Helpful to introduce rescaled action-angle variables, x, lpha

$$a = \sqrt{nx}e^{-i\alpha}$$

$$\left[\omega \partial_{\alpha} - 2\gamma \left(x \partial_{x}^{2} + (x+1)\partial_{x} + \frac{1}{4x}\partial_{\alpha}^{2} + 1\right)\right] \rho(x,\alpha) = E_{0}\rho(x,\alpha).$$

Take ansatz

$$\rho_{\kappa,\nu}(x,\alpha) = \sqrt{x^{|\nu|}} e^{i\nu\alpha} \psi_{\kappa,\nu}(x) e^{-x}, \qquad E_0 = 2\gamma\kappa + \gamma|\nu| + i\nu\omega.$$

Reduces to associated Laguerre equation

$$x\psi_{\kappa,\nu}^{"} + (1+|\nu|-x)\psi_{\kappa,\nu}^{'} + \kappa\psi_{\kappa,\nu} = 0.$$

Higher-order correlations?

- Does the KZ state avoid all divergences as $\gamma \to 0$?
- Choose $G = a_1^* a_1 a_2^* a_2$ in the Ehrenfest equation
- Similarly

$$\lim_{\gamma \to 0} \left\langle \frac{d}{dt} a_1^* a_1 a_2^* a_2 \right\rangle = \lim_{\gamma \to 0} 2 \left(\gamma_1 + \gamma_2 \right) \left\langle a_1^* a_1 a_2^* a_2 \right\rangle_c \neq 0?$$

• Divergence avoided for thermal equilibrium, but not KZ?