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Introduction

The main point

Weak wave turbulence paradigm
▶ Find wave kinetic equation at leading order in a small parameter
▶ Study turbulent (KZ) stationary states

Can it be extended to higher orders? Non-perturbatively?

Our approach involves auxilliary stochastic forcing, dissipation
▶ Non-equilibrium stationary state from ‘equilibrium’ methods
▶ Simple(ish) algorithm to calculate corrections to collision integral
▶ Can derive kinetic equation in a large N model

Rosenhaus, D.S, Shuvo, Smolkin (arXiv:2308.00740), D.S (arXiv:2309.08484), Large N: Rosenhaus, D.S (to appear)
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Introduction

What is the system?

Consider classical field theories in terms of field ak

H =
∑
k

ωka
∗
kak +

∑
ijkl

λij;kl a
∗
i a

∗
jakal

Depending on choice of
ω, λ,

▶ Non-linear
Schrödinger

▶ Gravity waves
▶ Capillary waves?

Image: Will Dendis
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Introduction

Deriving kinetic equation

H =
∑
k

ωka
∗
kak +

∑
ijkl

λij;kl a
∗
i a

∗
jakal

Equations of motion for ‘wave action’ a∗rar

d

dt
a∗rar = {a∗kak, H} = 4

∑
jkl

Im
(
λrj;kla

∗
ra

∗
jakal

)
Take an ensemble average, ⟨a∗rar⟩ ≡ nr

Closure: ⟨a∗ra∗jakal⟩ can be expressed in terms of n (How?)
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Introduction

Weak wave turbulence

First order approximation to ⟨a∗ra∗jakal⟩

d

dt
nr = 4

∑
jkl

Im
(
λrj;kl⟨a∗ra∗jakal⟩

)
∝

∑
jkl

|λrj;kl|2
(∏

n
)(

1

nr
+

1

nj
− 1

nk
− 1

nl

)
δ
(∑

ω
)

This has equilibrium solutions ni = T/ (ωi − µ)

Also non-trivial KZ solutions: n(ki) ∝ |ki|−γ

Do these solutions exist at higher order?
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Liouville equation

Phase space picture

Turbulence as stationary ensemble ρ(a, a∗) on phase space

Can calculate expectation values like ⟨a∗ra∗jakal⟩

By Liouville equation,

dρ

dt
= −{ρ,H} = 0.

Image: Javier Martin-Garcia ( arXiv:2209.04632)
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Liouville equation

A formal solution

Liouville ‘Hamiltonian’: Ĥρ = {ρ,H}

Looking for zero eigenfunctions Ĥρ = 0

Find solution ρ0 to unperturbed Hamiltonian

Ĥ0ρ0 = −

{
ρ0,

∑
k

ωka
∗
kak

}
= 0

A lot of solutions. Pick ρ0 ∝ e
−

∑
k

1
nk

a∗
kak

Full solution
(
Ĥ0 + V̂

)
ρ = 0, if ρ satisfies

ρ = ρ0 − Ĥ−1
0 V̂ ρ

Closure: ρ depends on wave action nk in ρ0
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Liouville equation

A perturbative solution

ρ =

(
1− Ĥ−1

0 V̂ +
(
−Ĥ−1

0 V̂
)2

+ . . .

)
ρ0

First order: V̂ ρ0 = i
∑

(. . . ) a∗i a
∗
jakalρ0

But ‘problem of small denominators’:

Ĥ0a
∗
i a

∗
jakalρ0 = i (ωi + ωj − ωk − ωl) a

∗
i a

∗
jakalρ0

How to take Ĥ−1
0 V̂ ρ0 if there are resonances?

Ad-hoc solution: Regulate Ĥ0
−1

→
(
Ĥ0 − ϵ

)−1

Finds kinetic equation! But desire more well-behaved Ĥ0

Gurarie 1995 (hep-th/9405077), Rosenhaus, Smolkin 2022 (2212.02555).
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Langevin equation

Introducing forcing and dissipation

Goal: Regulate Liouville Hamiltonian

Modify classical equations of motion (one d.o.f.)

ȧ = −i ∂H
∂a∗

→ ȧ = −i ∂H
∂a∗

− γ

ω

∂H

∂a∗
+ f.

Dissipation term drives to local minima of H

Random forcing involves temperature T

⟨f(t)f(t0)⟩ = 2
γ

ω
T δ(t− t0).

Late time distribution is just ρ ∝ e−
1
T
H .

In the end can take γ → 0 limit
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Langevin equation

Many degrees of freedom

Now simply drive different modes with distinct temperatures

ȧk = −i ∂H
∂a∗k

− γ

ω

∂H

∂a∗k
+ fk,

⟨fk(t)fl(0)⟩ = 2
γk
ωk
Tk δ(t)δkl.

For non-interacting H0, the late time distribution is just

ρ0 =
∏
k

e
−ωk

Tk
a∗kak = e

−
∑

k
1
nk

a∗kak .

The ρ corresponding to the full H will have non-Gaussian corrections

Can again consider γk → 0 limit
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Langevin equation

The big picture

Classical equations → Langevin equations. Parameters γk, nk

Liouville Hamiltonian → Fokker-Planck Hamiltonian

Solve perturbatively for non-equilibrium stationary state ρ

Expectation values like ⟨a∗ra∗jakal⟩ may be calculated

These determine the collision integral of kinetic equation

Finally take the limit γk → 0 (if possible)

Equivalent approach: Martin-Siggia-Rose path integral

(MSR approach related to Schwinger-Keldysh)
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Fokker-Planck equation

Introducing Fokker-Planck equation

Completely analogous to Liouville equation

Langevin equation implies time dependence for phase space functions

dρ

dt
= −

(
ĤL + Ĥγ

)
ρ

ĤLρ = {ρ,H} is just the Liouville Hamiltonian, as before

Dissipation and forcing leads to

Ĥγρ = −
∑
k

γk
ωk

∂

∂a∗k

[
∂H

∂ak
ρ+ Tk

∂ρ

∂ak

]
+ c.c.
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Fokker-Planck equation

More on the Fokker-Planck equation

ĤLρ ≡ {ρ,H}, Ĥγρ = −
∑
k

γk
ωk

∂

∂a∗k

[
∂H

∂ak
ρ+ Tk

∂ρ

∂ak

]
+ c.c.

If Tk = T ,
(
ĤL + Ĥγ

)
e−

H
T = 0.

What if we linearize the dissipation term? − γ
ω

∂H
∂a∗ → − γ

ω
∂H0

∂a∗ = −γa

▶ Good: Ĥγ has no interaction dependence, simpler perturbation theory
▶ Bad: Thermal equilibrium is not a stationary state at finite γ
▶ Since we are ultimately taking γ → 0, perhaps this is fine

In either case, the problem of diagonalizing Ĥ0 is much clearer

▶ Can be reduced to the associated Laguerre equation
▶ A unique zero eigenvector
▶ The role of the ad-hoc ϵ is played by γ

D.S. 2023 (arXiv:2309.08484)
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Diagrams in perturbation theory

Diagrams from perturbative corrections

Example: Want to calculate ⟨aia∗j ⟩(2),

⟨aia∗j ⟩(2) =
∫
dada∗ aia

∗
j

(
−Ĥ−1

0 V̂
)2

ρ0

Recall V =
∑

ijkl λij;kla
∗
i a

∗
jakal

Integral vanishes unless each a paired with a∗ of same mode

Example of pairing
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Diagrams in perturbation theory

Time orderings of vertices

A contribution really involves an ordering of the vertices

These diagrams also arise in the MSR path integral

Each line is associated to a propagator ne−iωte−γ|t|

The ordering of vertices is just time-ordering

There are simple rules for evaluating time-ordered diagrams

Rosenhaus, D.S, Shuvo, Smolkin, 2023 (arXiv:2308.00740)
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Stochastic Ehrenfest theorem

Coming back to turbulence

Now we can calculate high-order correlation functions in the state ρ

But ρ involves a distinct Tk or nk for each mode. Too much freedom?

If we can set γ → 0, this would imply independent conserved
quantities

ρ̇ = −
(
ĤL + Ĥγ

)
ρ→ −{ρ,H} = 0.

There must be problems with the γ → 0 limit for most choices of nk

The KZ state avoids some pathologies in this limit
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Stochastic Ehrenfest theorem

Ehrenfest theorem

Take time derivative of expectation value of G(a, a∗)

d

dt
⟨G⟩ = −

∫
dada∗G

(
ĤL + Ĥγ

)
ρ

= ⟨{G,H}⟩ −
∫
dada∗GĤγρ.

For a stationary state (linear dissipation)

⟨{G,H}⟩ =
∑
k

γk

〈
ak
∂G

∂ak
+ a∗k

∂G

∂a∗k
− 2nk

∂2G

∂ak∂a
∗
k

〉
.

Using G = a∗rar will give wave kinetic equation

D.S. 2023 (arXiv:2309.08484)
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Stochastic Ehrenfest theorem

Back to wave kinetic equation

This relates a 4-point expectation to a 2-point expectation

⟨{a∗rar, H}⟩ = 4
∑
jkl

Im
(
λrj;kl⟨a∗ra∗jakal⟩

)
= 2γr [⟨a∗rar⟩ − nr]

In general ⟨a∗rar⟩ ∝ (2γr)
−1

The γ → 0 limit does not exist for most choices of nk

Collision integral may be found from ⟨a∗rar⟩
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Kinetic equation at large N

Large N model

Can sum certain corrections to all orders

Extend ak to N component field a⃗k

H =
∑
k

ωka⃗
∗
k · a⃗k +

1

N

∑
ijkl

λij;kl (⃗a
∗
i · a⃗k)

(
a⃗∗j · a⃗l

)
Can order diagrams in powers of 1/N

▶ Each vertex leads to a factor of 1/N
▶ Each loop leads to a factor of N
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Kinetic equation at large N

Cactus diagrams

‘Cacti’ have no cost in 1/N

This amounts to a renormalization of ω, n, γ

ω̃k = ωk + 2
∑
l

λkl;klñl,

The renormalization of n is akin to ‘saddle point’ or ‘gap’ equations

ñk =
nk

1 + 2
ωk

∑
l λkl;klñl

For linear dissipation the cacti simplify and n is not renormalized
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Kinetic equation at large N

Bubble chains

A bubble chain arc contributes at order 1/N

This amounts to a renormalization of λij;kl

λ̃ =
λ

1− λL

L is an integral derived from a single bubble L ∝
∫
ddk ∆n

∆ω+iγ

Collision integral takes same form as before

d

dt
ñr ∝ 1

N

∑
jkl

∣∣∣λ̃rj;kl∣∣∣2 (∏ ñ
)(

1

ñr
+

1

ñj
− 1

ñk
− 1

ñl

)
δ
(∑

ω̃
)
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Kinetic equation at large N

A change in scaling?

So what is different?

Some naive analyses:

λ̃ =
λ

1− λL
, λL ∝ λ

∫
ddk

∆n

∆ω

▶ For ω̃, λ̃ to have same scaling as unrenormalized ω, λ

ω̃ ∼ |k|α, λ̃ ∼ |k|β , ñ ∝ |k|−γ

γ = d+ β − α

▶ In the ‘non-perturbative’ limit where λL ≫ 1, λ̃ ≈ λ/(λL)

β → γ + α− d
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Kinetic equation at large N

Conclusion

Summary
▶ Modified equations of motion by auxilliary forcing and dissipation
▶ Efficient method to calculate correlation functions and corrections to

the kinetic equation
▶ Ehrenfest theorem: Non-perturbative relations between correlation

functions
▶ A kinetic equation for a large N theory

Remaining puzzles
▶ Interpretation of large N kinetic equation
▶ Understanding of γ divergences in higher correlation functions
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Appendix

Thank you!

Based on papers:
▶ Rosenhaus, D.S., Shuvo, Smolkin, Loop diagrams in the kinetic theory

of waves (arXiv:2308.00740)
▶ D.S., Fokker-Planck approach to wave turbulence (arXiv:2309.08484)
▶ Kinetic equation at large N: work in progress with V. Rosenhaus

See also
▶ Rosenhaus, Smolkin, Feynman rules for forced wave turbulence

(arXiv:2203.08168)
▶ Rosenhaus, Falkovich, Interaction renormalization and validity of

kinetic equations for turbulent states (arXiv:2308.00033)
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Appendix

MSR path integral

These same diagrams arise from a path integral approach

Martin, Siggia, Rose 1973, Janssen 1976, de Dominicis 1976

Comments on derivation

▶ Directly from Fokker-Planck Ĥ
▶ From Langevin equation. Similar to Faddeev-Popov trick
▶ Jacobian and non-linear dissipation

Fields in path integral involve time t or frequency z

▶ Z =
∫
DaDa∗e−

∫
dz
2π

1
2γn |(−i(z−ω)+γ)a+i ∂V

∂a∗ |2

▶ Free propagator
∫

dz
2π

2γn e−izt

(z−ω)2+γ2 = n e−iωte−γ|t|.

But we only need equal time expectation values

Application to wave kinetic equation: Rosenhaus, Smolkin 2022 (2203.08168)
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Appendix

Constructing the path integral

Solve for aE(t) given f, a(t0), E,

ȧ+
( γ
ω

+ i
) ∂H
∂a∗

− f = E.

The value of a function G(a, a∗) ‘on-shell’ may be calculated

G(a0, a
∗
0) =

∫
DEDE∗δ(E)δ(E∗)G(aE , a

∗
E)

=

∫
DaDa∗DηDη∗ ∂ (E, E

∗)

∂ (a, a∗)
ei

∫
dt(ηE∗+η∗E)G(a, a∗)

Now average over Gaussian statistics of forcing function f

⟨G(a, a∗)⟩ =
∫

DfDf∗e−
∫
dt

|f|2
2γn . . .
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Appendix

Diagonalizing Ĥ0

We want to solve Ĥ0ρ = E0ρ

Helpful to introduce rescaled action-angle variables, x, α

a =
√
nxe−iα

[
ω∂α − 2γ

(
x∂2x + (x+ 1)∂x +

1

4x
∂2α + 1

)]
ρ(x, α) = E0ρ(x, α).

Take ansatz

ρκ,ν(x, α) =
√
x
|ν|
eiναψκ,ν(x)e

−x, E0 = 2γκ+ γ|ν|+ iνω.

Reduces to associated Laguerre equation

xψ′′
κ,ν + (1 + |ν| − x)ψ′

κ,ν + κψκ,ν = 0.
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Appendix

Higher-order correlations?

Does the KZ state avoid all divergences as γ → 0?

Choose G = a∗1a1a
∗
2a2 in the Ehrenfest equation

Similarly

lim
γ→0

〈
d

dt
a∗1a1a

∗
2a2

〉
= lim

γ→0
2 (γ1 + γ2) ⟨a∗1a1a∗2a2⟩c ̸= 0?

Divergence avoided for thermal equilibrium, but not KZ?
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