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Introduction

The main point

@ Weak wave turbulence paradigm
» Find wave kinetic equation at leading order in a small parameter
» Study turbulent (KZ) stationary states

@ Can it be extended to higher orders? Non-perturbatively?

@ Our approach involves auxilliary stochastic forcing, dissipation

» Non-equilibrium stationary state from ‘equilibrium’ methods
» Simple(ish) algorithm to calculate corrections to collision integral
» Can derive kinetic equation in a large N model

Rosenhaus, D.S, Shuvo, Smolkin (arXiv:2308.00740), D.S (arXiv:2309.08484), Large N: Rosenhaus, D.S (to appear)
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What is the system?

@ Consider classical field theories in terms of field a;

H = Z wkaZCLk + Z )\z‘j;kl a;‘a;fakal
k ijkl

@ Depending on choice of
w, A,
» Non-linear
Schrodinger
» Gravity waves
» Capillary waves?

Image: Will Dendis
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Introduction

Deriving kinetic equation

* Xk
H = E Wraag + E )\ij;kl a; ajakal
k 15kl

@ Equations of motion for ‘wave action’ a;a,

d
o7 ara, = {agax, H} = 42 Im Ar kil G *akal)
Jkl

o Take an ensemble average, (ara,) = n,

o Closure: (ayajara;) can be expressed in terms of n (How?)
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Introduction

Weak wave turbulence

o First order approximation to (ayajaia;)

d k* k
Enr = 4%; Im ()\Tj;kl(arajakaﬁ)

x 3 Pt [0 (=)0 (Xw)

@ This has equilibrium solutions n; = T/ (w; — p)
@ Also non-trivial KZ solutions: n(k;) oc |k;| =7

@ Do these solutions exist at higher order?
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Liouville equation

Phase space picture

@ Turbulence as stationary ensemble p(a,a*) on phase space
*

o Can calculate expectation values like (ayajakar)

evolution

@ By Liouville equation, arve™ 2 _/_;,4( equl
dp
phase /‘. =
space P

Image: Javier Martin-Garcia ( arXiv:2209.04632)
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Liouville equation

A formal solution

e Liouville ‘Hamiltonian’: Hp = {p, H}

Looking for zero eigenfunctions pr =0

Find solution py to unperturbed Hamiltonian

Hopo = — {Po,zwkazak} =0
%

1 x
-3k g Wk

A lot of solutions. Pick pg x e

Full solution (ﬁg + V) p =0, if p satisfies

p=po—Hy'Vp

Closure: p depends on wave action ny in pg
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Liouville equation

A perturbative solution

p= (1 —H 'V + (—I?lo—lff)Z +> o

@ First order: Vpo=i3(...) ajatagapo

But ‘problem of small denominators':

2 * % . * %
Hoajajaxaipo =i (Wi +wj —wp —wy) a; ajaaipo

How to take Hy 'V py if there are resonances?

.- . -1
Ad-hoc solution: Regulate Hy ! — (HO — e)

@ Finds kinetic equation! But desire more well-behaved H,

Gurarie 1995 (hep-th/9405077), Rosenhaus, Smolkin 2022 (2212.02555).
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Langevin equation

Introducing forcing and dissipation

@ Goal: Regulate Liouville Hamiltonian
e Modify classical equations of motion (one d.o.f.)
(z——iaH . a__l,aH_zaHJrf
~ Oa* ~ Oa*  wOa* '
@ Dissipation term drives to local minima of H
@ Random forcing involves temperature T
Y
() f(to)) =2-T5(t — to)-
@ Late time distribution is just p e~TH.
@ In the end can take v — 0 limit
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Langevin equation

Many degrees of freedom

Now simply drive different modes with distinct temperatures

Z.@H bl OH
Oaj,  wdaj

(o) £1(0)) = 2257, 5(1) 6.

fk:

ap = —

@ For non-interacting Hy, the late time distribution is just

%k g — L gx
po = [ e T = ¢ 2 i

The p corresponding to the full H will have non-Gaussian corrections

Can again consider 7y, — 0 limit
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The big picture

Classical equations — Langevin equations. Parameters ., ng
Liouville Hamiltonian — Fokker-Planck Hamiltonian

Solve perturbatively for non-equilibrium stationary state p
Expectation values like (ayajara;) may be calculated

These determine the collision integral of kinetic equation
Finally take the limit v — 0 (if possible)

Equivalent approach: Martin-Siggia-Rose path integral

(MSR approach related to Schwinger-Keldysh)
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Fokker-Planck equation

Introducing Fokker-Planck equation

Completely analogous to Liouville equation

Langevin equation implies time dependence for phase space functions

Hyp={p, H} is just the Liouville Hamiltonian, as before

Dissipation and forcing leads to

B v O [OH dp
,yp Zwkaak[ p+Tk6 +c.c.
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Fokker-Planck equation

More on the Fokker-Planck equation

) ) o [0H 9
Hpp={p H}, HVp:*Z%iaaZ {aak +Tkap]+cc

H
T

o If Ty =T, (Hy+1T,) e # =0,

@ What if we linearize the dissipation term? f%gg — —

Y OHo _ _
waar — G

» Good: flﬂ, has no interaction dependence, simpler perturbation theory
» Bad: Thermal equilibrium is not a stationary state at finite ~y
» Since we are ultimately taking v — 0, perhaps this is fine

@ In either case, the problem of diagonalizing Hy is much clearer

» Can be reduced to the associated Laguerre equation
» A unique zero eigenvector
» The role of the ad-hoc € is played by

D.S. 2023 (arXiv:2309.08484)
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Diagrams from perturbative corrections

@ Example: Want to calculate (a;a})®),
N2
<aia;‘»>(2) = /dada* a;aj; (—HO_1V) 20

@ Recall V = Eijkl )\ij;klafa;akal
@ Integral vanishes unless each a paired with a* of same mode

@ Example of pairing

1C A
Y,

(-A.'V) (-H,0)p %
k’“ﬂI'Jr
l
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Diagrams in perturbation theory

Time orderings of vertices

A contribution really involves an ordering of the vertices

These diagrams also arise in the MSR path integral

Each line is associated to a propagator ne "t~

The ordering of vertices is just time-ordering

@ There are simple rules for evaluating time-ordered diagrams

Rosenhaus, D.S, Shuvo, Smolkin, 2023 (arXiv:2308.00740)
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Stochastic Ehrenfest theorem

Coming back to turbulence

Now we can calculate high-order correlation functions in the state p

But p involves a distinct T}, or ny for each mode. Too much freedom?

If we can set v — 0, this would imply independent conserved
quantities

p:—<ﬁL+ﬁw)P—>_{P»H}:O'

There must be problems with the v — 0 limit for most choices of ny

@ The KZ state avoids some pathologies in this limit
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Stochastic Ehrenfest theorem

Ehrenfest theorem

o Take time derivative of expectation value of G(a, a®)

%<G> __ /dada* G (ISIL + IS@) p

= ({G,H}) - /dada* G H,p.

e For a stationary state (linear dissipation)

. 0G 0’°G
(G H}) = Z’Yk:< k%_2nkm>-

k

e Using G = aja, will give wave kinetic equation

D.S. 2023 (arXiv:2309.08484)
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Stochastic Ehrenfest theorem

Back to wave kinetic equation

@ This relates a 4-point expectation to a 2-point expectation

{arar, H}) = 4> " Im (Ajularaarar))
jkl

= 277“ [(a:ar> - nr]

In general (a*a,) o (2v,) "

The v — 0 limit does not exist for most choices of ny

Collision integral may be found from (a}a,)
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Large N model

@ Can sum certain corrections to all orders

@ Extend a; to N component field @
o 1 o\ [k o
H = wy -+ N D Nijowa (@ - @) (@5 - @)
k ijkl

e Can order diagrams in powers of 1/N

» Each vertex leads to a factor of 1/N
» Each loop leads to a factor of V

B )

a ) Q
O o
T
[N 1 :
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Kinetic equation at large N

Cactus diagrams

@ ‘Cacti’ have no cost in 1/N
@ This amounts to a renormalization of w,n,~y O’OOO

Wk = wg + 2 Z Akt kLT ;
1
@ The renormalization of n is akin to ‘saddle point’ or ‘gap’ equations

ng
- . _
L+ 5220 Ak u

Tk

@ For linear dissipation the cacti simplify and n is not renormalized
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_[Kineticequation at large N |
Bubble chains

@ A bubble chain arc contributes at order 1/N

@ This amounts to a renormalization of A;;.x;

A

A=10C

An
Aw+ivy

@ L is an integral derived from a single bubble £ fddk

@ Collision integral takes same form as before
d 1 ~ 2 1 1 1 1
— My X — Arj; ’ ( ~) —— T = — = 5( ~)
dtn x N % 51kl n . + A, e Zw
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Kinetic equation at large N

A change in scaling?

@ So what is different?

@ Some naive analyses:

A
-\

An
d_
)\ﬁoc)\/dkA

A=
w
» For w, \ to have same scaling as unrenormalized w, A
O~ RS A~ RSP, o [B)TY
y=d+f-«
» In the ‘non-perturbative’ limit where AL > 1, A = A/(\L)

B—=av+a—d
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Kinetic equation at large N

Conclusion

@ Summary
» Modified equations of motion by auxilliary forcing and dissipation
» Efficient method to calculate correlation functions and corrections to

the kinetic equation
» Ehrenfest theorem: Non-perturbative relations between correlation

functions
» A kinetic equation for a large N theory
@ Remaining puzzles

> Interpretation of large N kinetic equation
» Understanding of « divergences in higher correlation functions
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Thank you!

@ Based on papers:
» Rosenhaus, D.S., Shuvo, Smolkin, Loop diagrams in the kinetic theory
of waves (arXiv:2308.00740)
» D.S., Fokker-Planck approach to wave turbulence (arXiv:2309.08484)
» Kinetic equation at large N: work in progress with V. Rosenhaus
@ See also
» Rosenhaus, Smolkin, Feynman rules for forced wave turbulence
(arXiv:2203.08168)
» Rosenhaus, Falkovich, Interaction renormalization and validity of
kinetic equations for turbulent states (arXiv:2308.00033)
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MSR path integral

These same diagrams arise from a path integral approach

Martin, Siggia, Rose 1973, Janssen 1976, de Dominicis 1976

@ Comments on derivation

» Directly from Fokker-Planck H
» From Langevin equation. Similar to Faddeev-Popov trick
» Jacobian and non-linear dissipation

Fields in path integral involve time t or frequency z

. ] . 2
v Z = [DaDare ! # |t tmarig
—izt

dz 2yne**t L —iwt—
> Free propagator [ ng é_’;‘;pmg — ne—twte=7Itl

@ But we only need equal time expectation values

Application to wave kinetic equation: Rosenhaus, Smolkin 2022 (2203.08168)
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Constructing the path integral

@ Solve for ap(t) given f,a(to), E,

e () e

@ The value of a function G(a,a*) ‘on-shell’ may be calculated
G(ag,ay) = /DEDE*(‘S(E)(S(E*)G(aE,a’fE)

— /DGDG*DT]DT]* %eifdt(nE*-Fﬂ*E)G(ma*)

@ Now average over Gaussian statistics of forcing function f

(Gla,a%)) = / DfDfre W
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Diagonalizing H,
@ We want to solve I:IOp = FEop

@ Helpful to introduce rescaled action-angle variables, z, «

a = +/nxe "

[w@a — 2y (m@i +(x+1)0, + %52 + 1>} p(z,a) = Epp(z, ).

@ Take ansatz
Pz, @) = \/Elulei”o‘wm,,(x)e_x, Ey = 29k +v|v| + ivw.
@ Reduces to associated Laguerre equation

xwg,y + 1+ - sc)w;,y + Ky, = 0.
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Appendix

Higher-order correlations?

Does the KZ state avoid all divergences as v — 07

Choose G = ajajajas in the Ehrenfest equation

Similarly

Y

Divergence avoided for thermal equilibrium, but not KZ?
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