Skyrmions and Hopfions in 3D Frustrated Magnets

Daniel Schubring

March 10, 2022

Outline

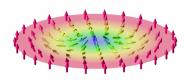
- Naya, D.S., Shifman, Wang (2021) arXiv: 2111.06385
- 3D topological defects in a lattice spin model
- Introduction
 - What is a 2D Skyrmion? (baby Skyrmion)
 - What is a 3D Skyrmion? (baryon)
 - lacktriangledown A bit of geometry involving $S^3 o S^2$
- Lattice spin models and baryons
- Extension of baby Skyrmions to 3D loops of string

Heisenberg model and 2D Skyrmions

• Classical ferromagnetic Heisenberg model

$$H = -J \sum_{\langle x,y \rangle} S(x) \cdot S(y) \quad \sim \frac{J}{2} \int d^2x \ (\partial S(x))^2$$

- Target space is S^2 . $\pi_2\left(S^2\right)=\mathbb{Z}$, so topological defects in 2D
- Derrick's theorem: Must be additional higher derivative terms
- Frustrated interactions rather than Dzyaloshinskii-Moriya
- "baby Skyrmions" or "magnetic Skyrmions"



⁰Image: Karin Everschor-Sitte and Matthias Sitte (Wikimedia Commons)

Principal chiral model and 3D Skyrmions

• Low energy effective theory of QCD in terms of $U \in SU(N_f=2)$

$$\mathcal{L}_{PCM} = \frac{f_{\pi}^2}{4} \text{Tr} \left(\partial_{\mu} U^{-1} \partial_{\mu} U \right).$$

ullet A column of U is a 2-component complex unit vector $z \in S^3$

$$U = \begin{pmatrix} \bar{z}^1 & z^0 \\ -\bar{z}^0 & z^1 \end{pmatrix}, \qquad \mathcal{L}_{PCM} = \frac{f_{\pi}^2}{2} \partial \bar{z} \cdot \partial z.$$

- Again topological defects since $\pi_3\left(S^3\right)=\mathbb{Z}$. Stable if Skyrme term
- ullet Q=1 'hedgehog' solution. Q>1 less symmetric rational map solutions

⁰Image: Houghton, Manton, Sutcliffe (1997)

Mapping S^3 to S^2

- ullet Can relate the S^3 and S^2 sigma models more directly
- If we ignore the phase of z, this is $\mathbb{C}P^1$. Bloch sphere
- More concretely, $S^i = -\bar{z}\sigma^i z$. Does not depend on phase
- If we use this change of variables,

$$\frac{1}{4} (\partial S)^2 = \partial \bar{z} \cdot \partial z - |\bar{z} \cdot \partial z|^2$$

- ullet Additional term subtracts out any change of z in phase direction
- Could imagine only partially subtracting out this change

Squashed sphere

- Hopf fibration visualization
- Generically $SU(2) \times U(1)$ global symmetry
- Can adjust length of fibers
- Zero length: U(1) is gauged
- Special length: $SU(2) \times SU(2)$
- Intermediate length parametrized by κ

$$\partial \bar{z} \cdot \partial z - \kappa \left| \bar{z} \cdot \partial z \right|^2$$

⁰Image: Niles Johnson (Wikimedia Commons)

Physical relevance of squashed sphere

- In 2D, useful as a toy model for high-energy
 - Integrability: Cherednik '81, Kawaguchi, Yoshida '10
 - Prototype 'Yang-Baxter model,' (Review: Thompson '19)
 - lacktriangleright Equivalent to the CP^N model coupled to extra fields
 - * Stueckelburg field
 - ★ Axion field (T-duality)
 - ★ Massless fermion (bosonization)
- AdS_4/CFT_3 duality: Bykov '10, Basso, Rej '12, '13
- In 2D and 3D, as an EFT for condensed matter systems
 - Two-component LG models coupled to extra fields
 - Frustrated spin systems: Dombre, Read '88;
 Chubukov, Sachdev, Senthil '94; Azaria, Lecheminant, Mouhanna '95;

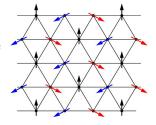
2D triangular antiferromagnet

- ullet Coplanar ground state. Constant spins e_r on sublattices
- Slow variation in spins $S_r(x) = R(x)e_r$, $R \in SO(3)$.
- Continuum effective theory: take $S_r(x)$ as defined at all x for all r.

•
$$S_r(x) \cdot S_s(x + a\delta_{r,s}) \sim S_r(x) \cdot \left(S_s(x) + \frac{a^2}{2!} \left(\delta_{r,s} \cdot \nabla\right)^2 S_s(x) + \dots\right)$$

- In general upon summing δ spatial derivatives will not be rotationally symmetric. They are in this case
- Can be rewritten in terms of R field

$$-\partial S_r\cdot\partial S_s\quad\Longrightarrow\; \mathrm{Tr}\left[\left(R^{-1}\partial R\right)^2e_s\otimes e_r\right]$$



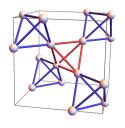
ODombre, Read (1988), Figure: Chernyshev, Zhitomirsky (2009)

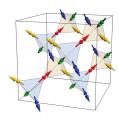
Right translation currents J_{μ}^{k}

- $\mathcal{H} \propto \operatorname{Tr}\left[\left(R^{-1}\partial R\right)^2 P\right], \quad P \equiv \sum_{s,r} e_s \otimes e_r$
- \bullet Lie algebra valued current $\left(R^{-1}\partial_{\mu}R\right)_{ij}=2\epsilon_{ijk}J_{\mu}^{k}$
- ullet Gives rate of change on Lie group in a given direction μ
- For typical lattices $P = diag(a, a, b), \quad a \neq b$ implies squashing!
- $\mathcal{H} \propto (J_{\mu}^{1})^{2} + (J_{\mu}^{2})^{2} + (1 \kappa)(J_{\mu}^{3})^{2}$
- \bullet At $\kappa=1$ motion in J^3 direction not penalized
- Gauge transformations: J^1, J^2 rotate by $2\phi, J^3_\mu \to J^3_\mu + \partial_\mu \phi$
- 3D Skyrmion (baryon) charge from Jacobian:

$$Q \propto \int d^3x \, \epsilon^{\lambda\mu\nu} J_{\lambda}^1 J_{\mu}^2 J_{\nu}^3$$

Pyrochlore lattice

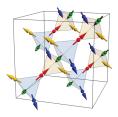




- Rather than triangles, tetrahedra
- Macroscopic degeneracy of classical ground state
- To break this:
 - Higher order neighbor interactions, especially third
 - ▶ Include quartic terms from the microscopic model ⇒ "all-in-all-out"

⁰Batista, Shifman, Wang, Zhang (2018)

Toy lattice model



- Triangular or tetrahedral cells are abstracted to a single point
- ullet Rectangular lattice, three spins e_r per site
- Angle between spins fixed by a constraint
- More colinear = more squashed
- ullet Spin e_r only interacts with spin with same r

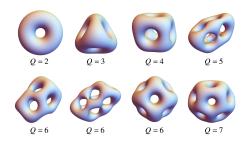
Frustration and stability of defects

- The continuum limit is the squashed sphere model
- Derrick's theorem: We need to keep higher order derivative terms

$$S_r(x + a\delta_r) = S_r(x) + \frac{a^2}{2!} (\delta_r \cdot \nabla)^2 S_r(x) + \frac{a^4}{4!} (\delta_r \cdot \nabla)^4 S_r(x) \dots$$

- But still a sign problem from integration by parts
- ullet Consider ferromagnetic interaction at a and antiferromagnetic at 2a
- Inversion-symmetric frustrated magnets: Lin, Hayami '16; Sutcliffe '17
- Lifschitz transition: Coefficient of 2nd order terms goes to zero
- ullet Side note: Squashed 4th order terms involve gauge potential J^3

Results of lattice simulation

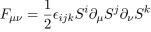


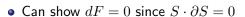
- Very similar to Skyrme model, BPS monopoles
- Rational map ansatz: $U(x) = \cos f(r) + i \sin f(r) \hat{n}(\theta, \phi) \cdot \vec{\sigma}$
- Energy and top charge density of ansatz very close to true solution
- Solutions robust under change of initial conditions
- Switching gears...

Magnetic Skyrmion strings

- In 3D, baby Skyrmions are extended
- 1d core is called 'position curve'
- 2-form to measure baby Skyrmion charge

$$F_{\mu\nu} = \frac{1}{2} \epsilon_{ijk} S^i \partial_\mu S^j \partial_\nu S^k$$





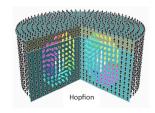
- Sum of baby Skyrmion charge on a closed surface is zero
- Loops aren't topologically stable?

Hopfions

- Just twist the string or tie it in a knot!
- On S^3 , globally defined gauge field F = dA
- The Hopf charge is defined as

$$Q = -\frac{1}{8\pi^2} \int d^3x \, \epsilon^{\lambda\mu\nu} A_{\lambda} F_{\mu\nu}$$

- Frustrated magnet has Hopfion solutions!
- (Another story: Faddeev-Niemi model and the squashed Skyrme model)



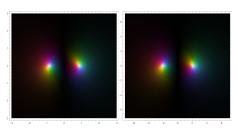


Hopfion charge and baryon charge

- What is the relation between the 3D Skyrmions and Hopfions?
- ullet Gauge invariant dJ^3 should be expressible in terms of S^i
- In fact $dJ^3 = F!$ So $A = J^3$
- ullet Another gauge invariant quantity is $J^1\wedge J^2$
- Flat connection: $F = dJ^3 = 2J^1 \wedge J^2$
- \bullet So both charges are the same thing! $A \wedge F \propto J^1 \wedge J^2 \wedge J^3$
- ullet Any field configuration to S^3 can be projected to S^2 with same Q
- ullet Likewise we may (non-uniquely) extend any field configuration to S^2
- ullet The only difference is energy associated to J^3 field

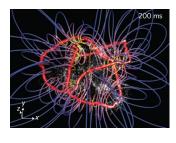
Hedgehog Skyrmions and position curve loops

- How can a spherically symmetric 'nucleon' be a loop of string?
- \bullet The energy associated to J^1, J^2 concentrated near loop
- ullet J^3 flows through the middle like a dipole field
- The energy and topological charge densities take both into account
- As we 'squash' the system, only very subtle change



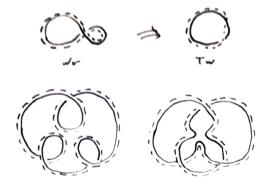
Thin 'baryon strings'

- Dipole analogy: The baby Skyrmion charge is like 'current'
- Since $F = dJ^3$, the circulation of J^3 is proportional to 'current'
- ullet From Euler-Lagrange, $abla \cdot J^3 = 0$ outside core
- Can use Biot-Savart law to find J^3 outside core (fluid analogy)
- Unwind hedgehog to form straight string
- Global vs local strings
- Energy of large loops agrees with unstable solutions in Battye, Sutcliffe (1999)
- Strings lower energy by 'crumpling,' $E \sim {\cal O}^{3/4}$

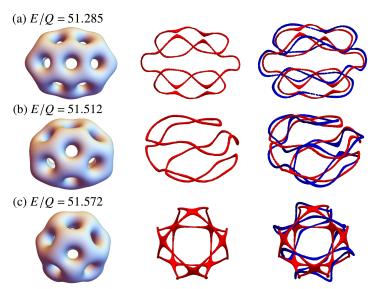


Nuclei as vortex knots?

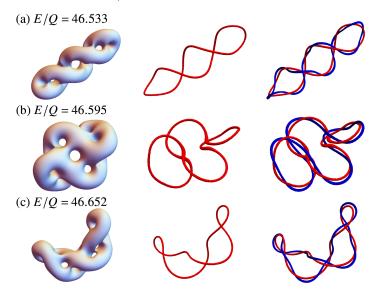
- Lord Kelvin's old idea
- How can isolated loops form a knot?
- Consider 'ribbon,' Q = Tw + Wr



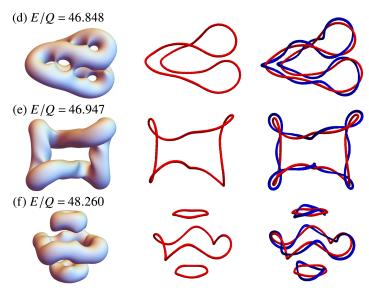
Charge 10 at $\kappa = 0$



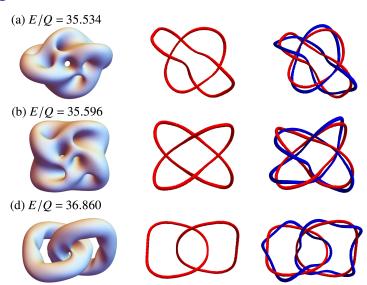
Charge 10 at $\kappa = 5/7$



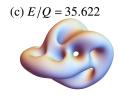
Charge 10 at $\kappa = 5/7$



Charge 10 at $\kappa \approx 1$

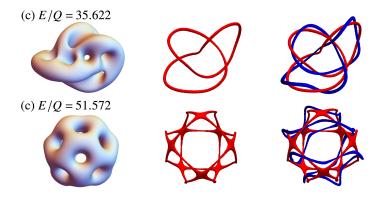


Conclusion



- Future directions
 - lacktriangle Exploring metastable states as κ is varied in more detail
 - ▶ 3D Skyrmions in real materials. Pyrochlore lattice?
 - Lifschitz transition and Skyrmion crystals
 - Any insight into the Skyrme model and QCD?

Thank you!



Naya, D.S., Shifman, Wang (2021) arXiv: 2111.06385