Renormalons in 2D asymptotically free theories

Daniel Schubring

January 27, 2023

Outline

- Introduce general ideas about resurgence
 - Borel transform
 - Renormalons
 - Transseries
- Introduce 2D model as a toy model for gauge theory
 - ► Variants of O(N) nonlinear sigma model
 - ▶ OPE of spinon correlation function is a transseries
- Find OPE and verify cancelation of ambiguities
 - OPE via background field method
 - ▶ OPE via expansion of large N result

Divergent perturbation series

- Perturbation series are typically asymptotic series
- Anharmonic oscillator in QM

$$V = \frac{1}{2}\omega^2 q^2 + \frac{1}{3}\omega^3 \lambda q^4$$

Can calculate ground state energy

$$E_0 = \frac{1}{2}\omega + \omega \sum_{n=0} A_n \lambda^{n+1}$$

• Bender, Wu (1969): alternating factorial

$$A_n \sim \sqrt{\frac{6}{\pi^3}} (-1)^n \Gamma\left(n + \frac{3}{2}\right)$$

Dyson argument

Borel transform

- How can we treat asymptotic series?
- Define new series in complex t that is better behaved

$$I(\lambda) = \sum_{n=0}^{\infty} A_n \lambda^{n+1}$$
 $\rightarrow_{\mathcal{B}}$ $f(t) = \sum_{n=0}^{\infty} \frac{A_n}{n!} t^n$

Can recover original series

$$I(\lambda) = \int_0^\infty dt f(t) e^{-\frac{t}{\lambda}}$$

Borel transform: Example

$$I(\lambda) = \sum_{n=0}^{\infty} A_n \lambda^{n+1} \qquad \to_{\mathcal{B}} \qquad f(t) = \sum_{n=0}^{\infty} \frac{A_n}{n!} t^n$$
$$I(\lambda) = \int_0^{\infty} dt f(t) e^{-\frac{t}{\lambda}}$$

Example: alternating factorial

$$\sum_{n=0}^{\infty} n! (-1)^n \lambda^{n+1} \qquad \rightarrow_{\mathcal{B}} \qquad \sum_{n=0}^{\infty} (-t)^n = \frac{1}{1+t}$$

• $I(\lambda)$ is well defined for any λ .

$$I(\lambda) = \int_0^\infty dt \frac{e^{-\frac{t}{\lambda}}}{1+t} = -e^{\frac{1}{\lambda}} \mathrm{Ei} \left(-\frac{1}{\lambda} \right)$$

Non-alternating factorial?

Renormalons

Non-alternating factorial: Pole on the integration path

$$I(\lambda) = \int_0^\infty dt \frac{e^{-\frac{t}{\lambda}}}{1 - t}$$

Regulate by shifting contour slightly above and below

- 'Renormalon ambiguity'
- Total ambiguity $2\pi i e^{-1/\lambda}$
- Does this hint at non-perturbative physics?

Resurgence in the double-well

Double-well potential in QM

$$V = \frac{\omega^2}{2} q^2 \left(1 - \sqrt{\lambda \omega} q \right)^2$$

• Brezin, Parisi, Zinn-Justin (1977)

$$A_n \sim -\frac{3}{\pi}n!3^n$$

- Need to account for instantons in the path integral: tunneling
- Perturbation series including multi-instanton sectors: 'transseries'
- Bogomolny (1980): Multi-instantons have ambiguities

Resurgence paradigm in QFT

- There is renormalon in QCD. Is it also cured by instantons?
- Dunne, Unsal (2012): Compactify with twisted boundary conditions
 - Instantons fractionalize
 - No phase transition with compactification scale
 - Reduces to ordinary QM
- We're taking different approach
 - No compactification
 - Correlation functions rather than free energy
 - ▶ Non-perturbative data is coming from expectation values of operators

O(N) model

ullet Classical N-component unit vector spin n^i at each point

$$S = \frac{1}{2\lambda} \int d^2x \left(\partial n^i(x) \right)^2, \qquad \left(n^i \right)^2 = 1$$

- ullet "N-vector model. Quantum rotor model. Sigma model on S^{N-1} "
- Perturbative parameter λ is like temperature.
- ullet Choose unconstrained coordinates $arphi^a$

$$n^{i} = \left(\sqrt{\lambda}\varphi^{a}, \sigma\right), \qquad \sigma \equiv \sqrt{1 - \lambda (\varphi^{a})^{2}}$$
$$S = \frac{1}{2} \int d^{2}x (\partial \varphi^{a})^{2} - \lambda^{-1}\sigma \partial^{2}\sigma$$

Looks like massless theory

Non-perturbative aspects of O(N) model

ullet Finite correlation length m^{-1} depending on UV cutoff M

$$m = Me^{-\frac{2\pi}{\lambda}}$$

- Mermin-Wagner theorem
- Introduce Lagrange multiplier field $\alpha(x)$

$$\mathcal{L} = \frac{1}{2\lambda} \left[(\partial n)^2 + \alpha \left(n^2 - 1 \right) \right]$$

• VEV of α (or $n \cdot \partial^2 n$) leads to mass term

$$\langle \alpha \rangle = m^2 + \mathcal{O}(1/N)$$

• Non-perturbative data will come from VEVs

Operator product expansion

• Lowest order correlation function $\langle n(p) \cdot n(-p) \rangle^{(0)}$

$$\frac{1}{p^2 + m^2} = \frac{1}{p^2} \sum_{k=0} \left(-\frac{m^2}{p^2} \right)^k = \sum_{k=0} (-1)^k p^{-2(k+1)} \langle \alpha^k \rangle$$

Schematically

$$\langle n(p) \cdot n(-p) \rangle = \sum_{k} C_k(p, \lambda) \langle O_k \rangle$$

- "Coefficient functions" C_k involve a power series in λ at higher order
- Non-perturbative dependence on λ is all in operator VEVs

$$\langle O_k \rangle \propto m^{2k} \sim e^{-\frac{4\pi k}{\lambda}}$$

Renormalons in the O(N) model

• To see renormalon ambiguities we must consider $\mathcal{O}(1/N)$ corrections

- David (1984): There are also ambiguities in the operator VEVs
- This was controversial in the mid 1980s. Two approaches:
 - Novikov, Shifman, Vainshtein, Zakharov (ITEP group)
 - ★ Get OPE from a background field method
 - \star No ambiguities, but arbitrary factorization scale μ
 - ▶ David (1984,1986); Beneke, Braun, Kivel (1998)
 - \star Get OPE by expanding large N results
 - ★ Ambiguities. No factorization scale

ITEP group approach

- ullet 4D gauge theories and the 2D O(N) model have similarities
 - ▶ Non-perturbative scale Λ_{QCD} or m
 - ▶ Non-perturbative VEVs $\langle G_{\mu\nu}G^{\mu\nu}\rangle$ or $\langle \alpha \rangle$
 - Infrared divergences
 - Renormalons
- ullet Cured by picking a factorization scale μ between IR and UV

IR
$$m < \mu < p < M$$
 UV

Split fields as in Wilsonian renormalization

$$n^i = n_0^i + \varphi^i$$

• Perturbation theory is done with UV fields. IR fields lead to VEVs.

Polyakov-style background field method

- \bullet Problems with naive splitting $n^i=n^i_0+\varphi^i$
- \bullet Split to maintain O(N) symmetry of IR fields

$$n^i = \sigma n_0^i + \sqrt{\lambda} \varphi^a e_a^i$$

- Nth component is always chosen in direction of IR field
- Leads to SO(N-1) gauge invariant action for φ^a
- After dropping terms with unfavorable contractions at $\mathcal{O}(1/N)$

$$S = S_0 + \frac{1}{2} \int d^2x \left[(\partial \varphi)^2 + (n_0 \cdot \partial^2 n_0) \varphi^2 + \dots + \mathcal{O}(\lambda) \right]$$

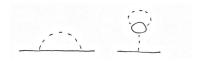
ullet Similar approach works for SUSY O(N), squashed sphere model

Background field diagrams

- Looks like large N correction diagrams
- ullet Operator VEV part of OPE: Expand base in m^2 and k^2
- ullet Coefficient function part of OPE: Expand lpha propagator in m^2



BBK approach



- Start with large N corrections to $\langle n(p) \cdot n(-p) \rangle$
- Expand loop integral in powers of m^2 to get OPE

$$\int \frac{d^2k}{(2\pi)^2} \frac{2\pi}{\xi \log\left(\frac{\xi+1}{\xi-1}\right)} \left(\frac{k^2 + 4m^2}{(p-k)^2 + m^2} - 1\right), \qquad \xi \equiv \sqrt{1 + 4\frac{m^2}{k^2}}$$

• Is expanding α propagator in integrand directly enough?

Mellin transform

Problems with interchanging sum and integral

$$\int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2+m^2)^2} =_? \sum_j (-m^2)^j \int \frac{d^2k}{(2\pi)^2} \frac{1}{k^{2(j+1)}} \frac{1}{k^2+m^2}$$

Instead take Mellin transform

$$\frac{1}{k^2 + m^2} = \frac{1}{m^2} \int_C \frac{ds}{2\pi i} \left(\frac{m^2}{k^2}\right)^s \Gamma(s) \Gamma(1-s)$$

- Terms of expansion encoded as poles of $\Gamma(s)\Gamma(1-s)$
- ullet The integration over k introduces new poles. Operator VEVs.

Results of BBK method

• Rewrite α propagator. t will become Borel parameter

$$\frac{1}{\log(\dots)} = \int_0^\infty dt (\dots)^{-t}$$

- Take Mellin transform and integrate over k
- Result is Borel transformed coefficient functions and operators

$$\langle n(-p)n(p)\rangle^{(1)} = \sum_{j} \int_{0}^{\infty} dt \left[e^{-\frac{t}{\lambda(p)}} C_{j}^{(1)}(p^{2},t) m^{2j} + C_{j}^{(0)}(p^{2}) \langle O_{j}\rangle^{(1)}(t) \right]$$

• All renormalon poles on positive t axis cancel. Transseries in $\lambda!$

Conclusion

- What did we do?
 - OPE to all orders outside of CFT
 - Transseries to all orders outside of ordinary QM
- Why?
 - ightharpoonup The O(N) and related models are toy models for 4D gauge theories
 - Vanishing of VEVs in SUSY theories impacts renormalons?
 - ▶ Bring more technical control to resurgence paradigm
- What's next?
 - Genuine super Yang-Mills?
 - ▶ Connect operator ambiguities to topological defects in path integral?

Thank you!

- SUSY O(N) model: With Chao-Hsiang Sheu and Misha Shifman: Phys. Rev. D 104, 085016 (2021)
- Squashed sphere model: arXiv:2207.10549 Chap. 5 (2022)