Relativistic Fluids of Topological Defects

Daniel Schubring

April 1, 2015

o & = E DA
Daniel Schubring Relativistic Fluids of Topological Defects



Introduction

String Networks

@ Examples
» Cosmic Strings
* Phase transitions
* Topological defects

» Quantum Turbulence
» Magnetic Flux Tubes
@ Different scales
@ In superfluid, HVBK equations

@ Apply idea to other systems
e Outline

» Relativistic perfect fluids

» Coarse-grained Nambu-Goto fluid
» Variational principles

» Dissipative effects
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_PerfectFluds |
Perfect Fluid

T = (p+ p)utu” — pgh”

Equation of state: p(n,) is a function of extensive currents

Locally conserved: V,(nqu*) = V,ni =0

Chemical potentials (or temperature): p® = 22

Pressure via Euler equation: p = —p 4 u%n,

Legendre transform (n to u): n, = aa,fa

0=V,T" =V, (n*n.u’u, — pdt)
=y Vu(p uy) = naVop®
=2 ngV[M ,UJZ}
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Vorticity

\

Wy = 2V iy

Equation of motion: u*w,, =0
Stokes' theorem — circulation
Closed surface in 4D $w =0

So Kelvin circulation theorem

Spacelike direction w*w,,, = 0 (Simple
bivector)

Integral describes flux of field lines

Field lines of w as strings

So dw = 0 describes flux conservation
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Perfect Fluids

F Tensor

The dual F* = %e“l’p”wm is tangent to field lines
dw = 0 implies V,F'* =0

Similar to conservation of T, n

0 —-By —By —Bsj

By 0 Es —FEs

B2 —E3 0 E1

By FE» —-E; 0

e V-B=0, B=-VxE

o Still perfect fluid! But also in MHD

o Just as n* = nu* describes charge, F*¥ = pX*" describes flux

FH =

@ String fluid: ¢ itself is thermodynamic quantity
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Individual Strings

Consider ‘microscopic’ string network

Worldsheet in spacetime X*(7,0)

Velocity and tangent vector

Ut =X~
Wk = XH#

When coarse-grain these become fields
@ Nambu-Goto strings

» Worldlines extremize ‘length’

» Worldsheets extremize spacetime area
Nambu-Goto Action —fd277 V—h,
where hgp, = g#,,Xflef{;
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Coarse-Graining

Coarse-Grained Currents

@ How do we coarse-grain many individual strings?
@ Energy-momentum distributed in spacetime

TH (2)y/—g = /d%\/—_h hXE XY 6(x — X (n))

Delta function, so singular
Add up and coarse-grain in volume AV (z)

1
jo% - IS A S ' S
@) = 5y [ TEVgdts
General singular conserved current has form
)= = [ &I X8 - X))

e Both spacetime and worldsheet V,J* =0 <= §,J% =0
o TH conservation = 8,(v—hh™X%) =0
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F Tensor Again

@ Currents on worldsheet, doesn’t depend on dynamics
JV = XY 0,J% =0
@ Corresponds to an antisymmetric tensor in spacetime
Py = [ v sa - X )

o Coarse-grained (F') plays same role as vorticity or EM field tensors

@ The conservation V,F'*” = ( related to topological flux of strings
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Light-Cone Coordinate Vectors

A perturbation travels along the string in two directions

The tangent vectors to these paths in spacetime are denoted A, B

AF = UM —WHE,  BF=UF4+ W

(T = 5y [ dpAWBY), (F) = o [dpAlrBY

Coarse-graining ~ expectation value with respect to energy-density
measure

Statistics of A and B are independent. (T) and (F') factor

Kinetic theory of string segments = ‘local equilibrium’ principle
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Coarse-Graining

Equations of Motion

(T = pALBY), (F)yr = pAlrBY]

e From V (T)" =V, (F)* =0, in terms of U, W
Vu(pU") =V (pWH) =0
Urv, " — W ,W"» =0
wWHY,U" — UFV WY =0

If W =0, dust of small loops. Pressureless.

Frobenius theorem implies integrable submanifolds.

Field lines of W trace out worldsheets.

Like macroscopic strings. Nambu-Goto?
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Current-Carrying Strings

@ Submanifolds are wiggly string worldsheets

Mass-per-length and tension MT = 2

Like energy density, pressure, for a perfect fluid
From Carter: there is some conserved current v
Equation of state M (v) = pov/1 + 12

Tension defined through M =T + pyv, u= %—Af
More general strings by changing form of M (v)
What is the current v?

If v = (Tu/po)sy, temperature T — Tx
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Fluid Lagrangians

The equation of state M (v) like a Lagrangian

For ordinary perfect fluid, p and n

1 -
L= —p(n), n? = —3 )"“’nAW

Varying by metric gives correct TH"

Try same for string fluid: p = @M (v), where ¢? = %F“”FW

Considering units, take n = v

So L= —p=—/(nop)?+ (Tun)?

Constructing £ from different M (v) leads to different submanifolds
If n dependence vanishes, £ = —HO\/?, is Stachel-Letelier model
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S s oo LB
Perfect String Fluid

@ Begin with any charge and flux V,n* =V ,F* =0
@ Velocity u* is unit vector %n“
@ Tangent vector w* is unit vector éF’“’uV

e Given an arbitrary Lagrangian £(p?,n?) we then find
™ = (p + p)u'u” — (T + p)w'w” — pg"”
@ Pressure defined so that
p=—p+mn+up,

withm = —L, and p=—-L,

@ String tension 7 = p — mn
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Perfect String Fluids

Magnetohydrodynamics

o Is MHD a ‘perfect string fluid’? F is EM field tensor

@ Simple bivector condition u“ﬁ’w = 0 equivalent to ‘frozen-in’
magnetic field condition

@ Full fluid sum of ordinary fluid and EM parts

TH = T 4 TH

- 1 -
= (p+p)uu’ — pg" — FUEY, + " PP Ey

12 1% 1 7
= (p+p+ e’ — pruwl” — (p+ S¢%)g"

1

@ Check that thermodynamics consistent: £ = —p — 50 = —protal,

1 2
Ptotal =D + 590 ;

o Difference between plasma and cosmic string fluid?
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2+1d Field

What are the fields that are varied?
2+1d theory: strings in 2D plane

‘Height' function X describing contour lines
Construct ' = xdX = V,F* =0

If L =—+/—dX?2, contour lines move as
Nambu-Goto strings

o Different dependencies on dX? lead to pressure ‘
@ e.g. Massless scalar field £ = ¢#70, X0, X WJ/,)/ 2

@ In 3+1d, describes domain walls
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Perfect String Fluids

Variational Principle

In 3+1d need two fields X, Y to label submanifolds

X,Y normalized so that F' = dX A dY is flux two-form

V,F* =0 by construction

To describe fluid particle worldlines need an additional label Z
Velocity confined to integrable submanifolds by construction
Normalized so that 7 = dX A dY A dZ number density volume form
E(%ﬁﬂ, —%fﬂ) varied by X, Y, Z. ..

SN (45a) + 20V () =

@ Relabeling symmetry leads to Noether currents. Equations of motion
equivalent to conservation. Effective field theory?
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Dissipative String Fluids

Dissipative Fluids Introduction

o Identify a current as entropy: p = —p+T's + pp

@ Perfect string fluid is isentropic

u, VT =TV, (su”) + p(Vpput — oh) Vaul) = 0

In dissipative case there will be entropy production terms. 2nd Law
Still true V,TH =V, FI' =V, n = 0, no longer perfect fluid form

No longer a uniquely preferred velocity. Eckart vs Landau-Lifshitz
frames

@ Alternatively, choose u,w from eigenspace of F/\PFW ~ h;\t. String
frame vs integrable frame

If nearly perfect fluid, all frames are close. Principle of frame
invariance
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Dissipative String Fluids

Dissipative Terms
@ Once we've chosen u,w, we can define T¢q

T — 727 + 2l + ...
Fro = Fepqa +owlPpol

@ Now, from T_lu,,VHT‘“’ =0
1 1
+ —ut'V )

1 15
T R o AR 210 v e
V,(su —I—Tq T ) —q (VVT T
—l—u”(V,,% + %w“vﬂwy) +e

Fdp — Kdp

@ From 1st Law, ds = T

@ From 2nd Law,
qr =k " (VT = Tu"V,u,),

vt = Ep LHP (Vp% + %w"vawp)
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Entropy Production

There is heat flow and viscosity. What about v7

T

°

o Non-relativistic limit, v = —&p (V. A& — £ (w - V)w)
o Field lines want to go to lower p/T

°

Second term depends on curl w x v = &7 & (V x w) |

Another term with distinct coefficient G = L (V xw)

Production of loops and wiggles
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Dissipative String Fluids

Resistive Magnetohydrodynamics

What if we apply the dissipative string fluid idea to MHD?
In MHD, ow = B,
From V,F#" =0, Faraday's Law

B=-Vx(Bxv)—-Vx(wxv)—-VxG
=-VxE (1)

E=-vxB+4(VxB)+5%Bx VT
By Ampere’s Law, V x B ~ J. So just Ohm’s Law with o0 = T¢7!

Temperature gradient term, Nernst effect
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Hydrostatic Equilibrium

@ What if we have a dissipative system in equilibrium?

@ Setting all dissipative terms to zero constrains system

e Can prove u*V, f(s,T,¢p,...) =0

@ Timelike Killing vector V(ﬂ%uy) =0

@ Curvature in strings balanced by gradients of
=0 = (W‘V)W:VLIH%

@ Spacelike irrotational vector V[u%wy] =0

@ Natural coordinate system

@ Astrophysical applications?
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Thank you!

@ Any questions?
@ References and more info in papers:

» Field Theory for Perfect String Fluids: arXiv:1410.5843 [hep-th]
» Dissipative String Fluids: arXiv:1412.3135 [hep-th]
» String Fluid in Local Equilibrium: arXiv:1406.1226 [hep-th]
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Relabeling Symmetries
X,Y, Z only appear in combinations F,ﬁ
Z — Z + F(X,Y) symmetry. Carter's dual current

o

o

@ Symmetries of X, Y, symplectic transformations

o Effective field theory picture (Dubovsky et al), higher derivative terms
°

Instead of dependence on 7, mu* = dZ' + XdY leads to superfluid
description

@ dX NdY NdZ' also allowed by symmetry, describes Zhukovsky lift
(Carter-Langlois model)

I Magnus Force

———
@ Dissipation by integrating out irrelevant degrees of freedom
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Higher-Order Effects

o Longitudinal heat flow Q = an“(V#T — Tu”Vl,uu)
o Appearance of heat equation 7" = %L@ZJT

@ But entropy current s is a function of T', F' expanded about an
equilibrium state

Including second-order terms, e.g. —3ku"Q?
e C
KCT?T + —T = 82T
KL

s should not depend on the frame it is expanded about. This restricts
form of second-order terms

@ () transforms differently from other quantities, so second-order term
is fixed

@ Speed of second sound, ¢; = \/% = m

Daniel Schubring Relativistic Fluids of Topological Defects April 1, 2015 24 / 24



	Introduction
	Perfect Fluids
	Coarse-Graining
	Perfect String Fluids
	Dissipative String Fluids
	Appendix

