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Perfect Fluids

Perfect Fluid

Tµν = (ρ+ p)uµuν − pgµν

Equation of state: ρ(na) is a function of extensive currents

Locally conserved: ∇µ(nau
µ) ≡ ∇µnµa = 0

Chemical potentials (or temperature): µa ≡ ∂ρ
∂na

Pressure via Euler equation: ρ = −p+ µana

Legendre transform (n to µ): na = ∂p
∂µa

0 = ∇µTµν = ∇µ (µanau
µuν − pδµν )

= nµa∇µ(µauν)− na∇νµa

= 2nµa∇[µ µ
a
ν]
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Perfect Fluids

Vorticity

ωµν ≡ 2∇[µ µν]

Equation of motion: uµωµν = 0

Stokes’ theorem → circulation

Closed surface in 4D
∮
ω = 0

So Kelvin circulation theorem

Spacelike direction wµωµν = 0 (Simple
bivector)

Integral describes flux of field lines

Field lines of w as strings

So dω = 0 describes flux conservation

u

w
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Perfect Fluids

F Tensor

The dual Fµν ≡ 1
2ε
µνρσωρσ is tangent to field lines

dω = 0 implies ∇µFµν = 0

Similar to conservation of T, n

Fµν ≡


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


∇ ·B = 0, Ḃ = −∇×E

Still perfect fluid! But also in MHD

Just as nµ ≡ nuµ describes charge, Fµν ≡ ϕΣµν describes flux

String fluid: ϕ itself is thermodynamic quantity
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Coarse-Graining

Individual Strings

Consider ‘microscopic’ string network

Worldsheet in spacetime Xµ(τ, σ)

Velocity and tangent vector

Uµ ≡ Xµ
,τ

Wµ ≡ Xµ
,σ

When coarse-grain these become fields

Nambu-Goto strings
I Worldlines extremize ‘length’
I Worldsheets extremize spacetime area

Nambu-Goto Action −
∫
d2η
√
−h,

where hab ≡ gµνXµ
,aXν

,b
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Coarse-Graining

Coarse-Grained Currents

How do we coarse-grain many individual strings?

Energy-momentum distributed in spacetime

Tµν(x)
√
−g =

∫
d2η
√
−h habXµ

,aX
ν
,b δ(x−X(η))

Delta function, so singular

Add up and coarse-grain in volume ∆V (x)

〈T 〉µν(x) =
1

∆V

∫
Tµν(x′)

√
−g d4x′

General singular conserved current has form

Jµ(x)
√
−g =

∫
d2η JaXµ

,a δ(x−X(η))

Both spacetime and worldsheet ∇µJµ = 0 ⇐⇒ ∂aJ
a = 0

Tµν conservation =⇒ ∂a(
√
−hhabXν

,b) = 0
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Coarse-Graining

F Tensor Again

Currents on worldsheet, doesn’t depend on dynamics

Jaν ≡ εabXν
,b, ∂aJ

aν = 0

Corresponds to an antisymmetric tensor in spacetime

Fµν
√
−g =

∫
d2η JaνXµ

,a δ(x−X(η))

Coarse-grained 〈F 〉 plays same role as vorticity or EM field tensors

The conservation ∇µFµν = 0 related to topological flux of strings
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Coarse-Graining

Light-Cone Coordinate Vectors

A perturbation travels along the string in two directions

The tangent vectors to these paths in spacetime are denoted A,B

Aµ = Uµ −Wµ, Bµ = Uµ +Wµ

〈T 〉µν = 1
∆V

∫
dρA(µBν), 〈F 〉µν = 1

∆V

∫
dρA[µBν]

Coarse-graining ∼ expectation value with respect to energy-density
measure

Statistics of A and B are independent. 〈T 〉 and 〈F 〉 factor

Kinetic theory of string segments =⇒ ‘local equilibrium’ principle
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Coarse-Graining

Equations of Motion

〈T 〉µν = ρĀ(µB̄ν), 〈F 〉µν = ρĀ[µB̄ν]

From ∇µ〈T 〉µν = ∇µ〈F 〉µν = 0, in terms of Ū , W̄

∇µ(ρŪµ) = ∇µ(ρW̄µ) = 0

Ūµ∇µŪν − W̄µ∇µW̄ ν = 0

W̄µ∇µŪν − Ūµ∇µW̄ ν = 0

If W̄ = 0, dust of small loops. Pressureless.

Frobenius theorem implies integrable submanifolds.

Field lines of W̄ trace out worldsheets.

Like macroscopic strings. Nambu-Goto?
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Coarse-Graining

Current-Carrying Strings

Submanifolds are wiggly string worldsheets

Mass-per-length and tension MT = µ2
0

Like energy density, pressure, for a perfect fluid

From Carter: there is some conserved current ν

Equation of state M(ν) = µ0

√
1 + ν2

Tension defined through M = T + µν, µ ≡ ∂M
∂ν

More general strings by changing form of M(ν)

What is the current ν?

If ν = (TH/µ0)sν , temperature T → TH
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Perfect String Fluids

Fluid Lagrangians

The equation of state M(ν) like a Lagrangian

For ordinary perfect fluid, ρ and n

L = −ρ(n), n2 = − 1

3!
ñλµν ñλµν

Varying by metric gives correct Tµν

Try same for string fluid: ρ = ϕM(ν), where ϕ2 = 1
2 F̃

µνF̃µν

Considering units, take n = ϕν

So L = −ρ = −
√

(µ0ϕ)2 + (THn)2

Constructing L from different M(ν) leads to different submanifolds

If n dependence vanishes, L = −µ0

√
ϕ2, is Stachel-Letelier model
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Perfect String Fluids

Perfect String Fluid

Begin with any charge and flux ∇µnµ = ∇µFµν = 0

Velocity uµ is unit vector 1
nn

µ

Tangent vector wµ is unit vector 1
ϕF

µνuν

Given an arbitrary Lagrangian L(ϕ2, n2) we then find

Tµν = (ρ+ p)uµuν − (τ + p)wµwν − pgµν

Pressure defined so that

ρ = −p+mn+ µϕ,

with m = −L,n and µ = −L,ϕ
String tension τ ≡ ρ−mn
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Perfect String Fluids

Magnetohydrodynamics

Is MHD a ‘perfect string fluid’? F̃ is EM field tensor

Simple bivector condition uµF̃µν = 0 equivalent to ‘frozen-in’
magnetic field condition

Full fluid sum of ordinary fluid and EM parts

Tµν = Tµνm + TµνEM

= (ρ+ p)uµuν − pgµν − F̃µρF̃ νρ +
1

4
gµνF̃ ρσF̃ρσ

= (ρ+ p+ ϕ2)uµuν − ϕ2wµwν − (p+
1

2
ϕ2)gµν

Check that thermodynamics consistent: L = −ρ− 1
2ϕ = −ρtotal,

ptotal = p+
1

2
ϕ2,

Difference between plasma and cosmic string fluid?
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Perfect String Fluids

2+1d Field

What are the fields that are varied?

2+1d theory: strings in 2D plane

‘Height’ function X describing contour lines

Construct F = ?dX ⇒ ∇µFµν = 0

If L = −
√
−dX2, contour lines move as

Nambu-Goto strings

Different dependencies on dX2 lead to pressure

e.g. Massless scalar field L = gµν∂µX∂νX

In 3+1d, describes domain walls
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Perfect String Fluids

Variational Principle

In 3+1d need two fields X,Y to label submanifolds

X,Y normalized so that F̃ ≡ dX ∧ dY is flux two-form

∇µFµν = 0 by construction

To describe fluid particle worldlines need an additional label Z

Velocity confined to integrable submanifolds by construction

Normalized so that ñ ≡ dX ∧ dY ∧ dZ number density volume form

L(1
2 F̃

2,− 1
3! ñ

2) varied by X,Y, Z. . .

−3

2
F λµ∇[κ

(
µΣλµ]

)
+ 2nλ∇[κ

(
muλ]

)
= 0.

Relabeling symmetry leads to Noether currents. Equations of motion
equivalent to conservation. Effective field theory?
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Dissipative String Fluids

Dissipative Fluids Introduction

Identify a current as entropy: ρ = −p+ Ts+ µϕ

Perfect string fluid is isentropic

uν∇µTµν = T∇µ(suµ) + µ(∇µϕuµ − ϕhλµ∇λuµ) = 0

In dissipative case there will be entropy production terms. 2nd Law

Still true ∇µTµν = ∇µFµν = ∇µnµ = 0, no longer perfect fluid form

No longer a uniquely preferred velocity. Eckart vs Landau-Lifshitz
frames

Alternatively, choose u,w from eigenspace of F λρFρµ ∼ hλµ. String
frame vs integrable frame

If nearly perfect fluid, all frames are close. Principle of frame
invariance
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Dissipative String Fluids

Dissipative Terms

Once we’ve chosen u,w, we can define Teq

T ρσ = T ρσeq + 2u(ρqσ) + . . .

F ρσ = F ρσeq + 2w[ρνσ] + . . .

Now, from T−1uν∇µTµν = 0

∇µ(suµ +
1

T
qµ − µ

T
νµ)− qν(∇ν

1

T
+

1

T
uµ∇µuν)

+ νν(∇ν
µ

T
+
µ

T
wµ∇µwν) + · · · = 0

From 1st Law, ds = 1
T dρ−

µ
T dϕ

From 2nd Law,

qνT = κT ⊥µν (∇µT − Tuν∇νuµ),

νµ = ξT ⊥µρ (∇ρ
µ

T
+
µ

T
wσ∇σwρ)
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Dissipative String Fluids

Entropy Production

There is heat flow and viscosity. What about ν?

Non-relativistic limit, ν = −ξT
(
∇⊥ µT −

µ
T (w · ∇)w

)
Field lines want to go to lower µ/T

Second term depends on curl w × ν = ξT
µ
T (∇×w)⊥

Another term with distinct coefficient G̃ = ξL
µ
T (∇×w)‖

Production of loops and wiggles
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Dissipative String Fluids

Resistive Magnetohydrodynamics

What if we apply the dissipative string fluid idea to MHD?

In MHD, ϕw = B,

From ∇µFµi = 0, Faraday’s Law

Ḃ = −∇× (B× v)−∇× (w × ν)−∇× G̃

= −∇×E (1)

E = −v ×B + ξ
T (∇×B) + ξT

T 2B×∇T
By Ampere’s Law, ∇×B ∼ J. So just Ohm’s Law with σ = Tξ−1

Temperature gradient term, Nernst effect
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Dissipative String Fluids

Hydrostatic Equilibrium

What if we have a dissipative system in equilibrium?

Setting all dissipative terms to zero constrains system

Can prove uµ∇µf(s, T, ϕ, . . . ) = 0

Timelike Killing vector ∇(µ
1
T uν) = 0

Curvature in strings balanced by gradients of µ

ν = 0 =⇒ (w · ∇)w = ∇⊥ ln
µ

T

Spacelike irrotational vector ∇[µ
µ
T wν] = 0

Natural coordinate system

Astrophysical applications?
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Appendix

Thank you!

Any questions?

References and more info in papers:
I Field Theory for Perfect String Fluids: arXiv:1410.5843 [hep-th]
I Dissipative String Fluids: arXiv:1412.3135 [hep-th]
I String Fluid in Local Equilibrium: arXiv:1406.1226 [hep-th]
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Appendix

Relabeling Symmetries

X,Y, Z only appear in combinations F̃ , ñ

Z → Z + F (X,Y ) symmetry. Carter’s dual current

Symmetries of X,Y , symplectic transformations

Effective field theory picture (Dubovsky et al), higher derivative terms

Instead of dependence on ñ, muµ = dZ ′ +XdY leads to superfluid
description

dX ∧ dY ∧ dZ ′ also allowed by symmetry, describes Zhukovsky lift
(Carter-Langlois model)

Dissipation by integrating out irrelevant degrees of freedom
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Appendix

Higher-Order Effects

Longitudinal heat flow QL = κLw
µ(∇µT − Tuν∇νuµ)

Appearance of heat equation Ṫ = κL
C ∂

2
wT

But entropy current s is a function of T , F expanded about an
equilibrium state

Including second-order terms, e.g. −1
2ku

µQ2
L

kCT 2T̈ +
C

κL
Ṫ = ∂2

wT

s should not depend on the frame it is expanded about. This restricts
form of second-order terms

QL transforms differently from other quantities, so second-order term
is fixed

Speed of second sound, cs =
√

τ
ρ =

√
1−

(
T
TH

)2
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